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Abstract 

This paper examines machine learning predictability using classification 

models and investigates the relation between predictability and stock 

returns. The classifiers show significant and robust out-of-sample precision 

in placing stocks into the correct deciles, outperforming their counterpart 

machine learning regressions. The corresponding long-short portfolios 

deliver significant economic gains. The classifiers invest more resources in 

return state transitions with lower information shortage—and excel in 

predicting return deciles in the center and edges of the transition probability 

matrix. The classifiers extract information from different firm 

characteristics. Following Easley and O’Hara (2004), I show that prediction 

success is negatively related to the future returns at the stock level, 

controlling for information shortage. Information shortage also reduces the 

probability of prediction success. Portfolios conditional on information 

shortage show enhanced performance. A mimicking portfolio based on the 

shock of prediction precision generates significant 𝛼 benchmarking against 

popular factor models.  
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1. Introduction 

What are the consequences of return predictability? Easley and O’Hara (2004) 

show that the precision in the signals of return forecasting should be negatively related to 

the future returns. However, the empirical literature provides a paucity of evidence that 

supports this theoretical prediction for the stock market. This is potentially because the 

empirical literature has not been able to produce reliable out-of-sample (OOS) performance 

in backtesting until the recent development of the machine learning literature. For example, 

Chen et al. (2023) and Gu et al. (2020) show that the machine learning regressions 

demonstrate promising out-of-sample performance in stock return predictions. In this paper, 

I extend the financial machine learning literature to investigate the implications of return 

predictability. 

In particular, I apply classifiers to allocate individual stocks into decile portfolios.1 

My use of classifiers complete the methodological picture in the application of supervised 

learning in finance following the use of machine learning regressions (Gu et al. 2020). 

More importantly, since a single prediction of a return decile has an explicit modeling 

outcome, i.e., success or failure, classification methods provide the convenience in 

measuring stock-level prediction success and market-level prediction precision. Applying 

the predicted probabilities associated with decile portfolios for each stock, I propose the 

use of information entropy as a measure of relative information shortage in the cross-

section, which can be seen as a general form of information asymmetry and information 

uncertainty (Merton 1987; Shannon 1948; Zhang 2006).  

In addition, although the return predictability in the financial machine learning 

literature has been quite successful, it remains economically unclear how the machines 

capture the forward-looking information. By using the stock-level prediction success and 

the market-level prediction precision, I provide novel economic insights on sources of the 

machines’ power. 

 
1  More precisely, I model 𝑃𝑟𝑜𝑏(𝑠𝑡𝑜𝑐𝑘 𝑖 𝑖𝑛 𝑟𝑒𝑡𝑢𝑟𝑛 𝑑𝑒𝑐𝑖𝑙𝑒 𝑗 𝑎𝑡 𝑡 + 1|𝑐ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟𝑖𝑠𝑡𝑖𝑐𝑠𝑖,𝑡) =

𝐹(𝑐ℎ𝑎𝑟𝑎𝑐𝑒𝑟𝑖𝑠𝑡𝑖𝑐𝑠𝑖,𝑡)  instead of 𝐸[𝑅𝑖,𝑡+1
𝑒 ] = 𝐺(𝑐ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟𝑖𝑠𝑡𝑖𝑐𝑠𝑖,𝑡) , where 𝐹  and 𝐺  are machine learning 

classifiers and machine learning regressions, respectively (see Gu et al. 2020). 
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To analyze the sources and the consequences of the cross-sectional return 

predictability, I first establish the validity of classifiers in generating out-of-sample 

performance. I focus on tree models and neural networks because of their superior 

performance in predicting returns as reported in the literature (Bali et al. 2023; Chen et al. 

2022; Gu et al. 2020; Li and Rossi 2020). The results from these models can provide a solid 

foundation for the analysis on the consequences of return predictability.  

Economically, the long-short portfolios with monthly rebalance based on my 

predictions can achieve Fama-French 5-factor (FF5F) adjusted alphas as high as 2.1% and 

Sharpe ratios as high as 2.73. The statistical and economic performance of the models 

emphasizes the success of the classifiers in capturing the pricing kernel.2 Meanwhile, the 

prediction precision is robust. By aggregating the precision to the market level, I show that 

the time-varying prediction precision is always above the precision from the prediction 

conditional only on the distribution information (10% cross-sectional prediction precision).  

Since I synthesize the information based on a comprehensive set of firm 

characteristics, I argue that the prediction is representative of the publicly available 

information (Green et al., 2017). Additionally, the excellent out-of-sample performance 

also implies that the machine learning classifiers capture the information of the pricing 

kernel, and thus the classifiers are representative for the market’s best anticipation of the 

future returns.3 In head-to-head comparisons involving a grid search with a wide range of 

candidate hyperparameters, I find that the classifiers are better than their corresponding 

machine learning regressions in allocating individual stocks into correct future deciles. On 

average, the classifiers achieve a precision of above 15%, while the machine learning 

regressions achieve a precision of 12%.4 When stacking the predictions from machine 

 
2 Holding everything equal, the classifiers deliver performance that is comparable (if not superior to) machine 

learning regressions both statistically and economically. 
3 Before the application of machine learning methods in finance, no evidence has been documented to support 

out-of-sample performance in cross-sectional return predictions at the individual stock level. Martin and 

Nagel (2020) also derive a model to show that individual investors may not be able to fully process the public 

information, implying that machine learning predictions can be a superior choice for prediction studies. 
4  Both my classifiers and their benchmark machine learning regressions deliver statistically meaningful 

prediction precision compared to the precision of a naïve classifier with a precision of 10%. The naïve 

classifier is the raw benchmark in machine learning that predictively assigns each observation to the majority 

class and provides a benchmark of 10% in my case. Models of higher precision than that of the naïve classifier 

are considered as producing statistically significant predictability. This is similar to the comparison between 

the numerical predictions and the historical means in Goyal and Welch (2007).  
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learning classifications and machine learning regressions together, the economic 

performance in both equal-weighted and value-weighted long-short portfolios increases 

substantially to produce Sharpe ratios of 3.4 and 1.5 respectively, which emphasizes the 

meaningful addition in the information captured by the classification models benchmarking 

to the machine learning regressions. 

To understand the economic sources of the machines’ predictability, I analyze the 

success of machine learning predictions under the classification framework. The transition 

probability matrix shows that the transition of the return states in deciles is uneven. 

Compared with a pure random distribution, transitions from extreme deciles to extreme 

deciles and from middle deciles to middle deciles are more certain. Such transitions are 

associated with probabilities deviating from the random transition probability.  

For example, the transition from the lowest decile to the highest decile has a 

probability of 1.8%, deviating from the randomly distributed probability of 1%. The 

classifiers take advantage of such unevenness in the transition probabilities and achieve the 

highest performance in the middle deciles and the extreme deciles. When I measure the 

information shortage using Shannon’s information entropy calculated based on the 

predicted probabilities, I find that the information shortage replicates the uneven structure 

of the return transition matrix.5  

In general, I confirm that the machines benefit heavily from the least uncertain 

predictions.6 The machines achieve higher precisions in the predictions for the center and 

the tails of the return distribution. This unevenness is more pronounced in the predictions 

of the lowest return decile, where the aggregated predictions based on the individual 

classifiers deliver a precision of 49%. 

Next, I investigate what characteristics influence the prediction precision. The 

variable importance shows that different models get information from different firm 

characteristics. For example, the neural networks focus mainly on industry information, 

 
5 Because it measures the expected minimum binary questions that need to be answered to completely resolve 

the prediction uncertainty, the unit of the information shortage is “bit”, the standard unit of information. Firms 

with greater information shortage thus require more information to resolve return prediction uncertainty. 
6  Such heterogeneity in return predictability can signal different levels of market efficiency, i.e., market 

efficiency level is a function of firm characteristics. 
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while the tree models, especially Gradient Boosting Trees (GBT), rely on volatilities and 

bid-ask spreads. However, variable importance does not include a conventional statistical 

inference on the significance of the contribution. More importantly, variable importance 

does not reflect the direction of the contribution. Therefore, I analyze the machines’ 

predictability through predictive Fama-MacBeth regressions with prediction success as the 

response variable (Green et al., 2017). I specify the prediction success of a stock at a certain 

time with an indicator variable of a value 1 if the decile portfolio allocation is correct.  

A number of variables, including change in momentum and return on assets, 

contribute to the success of the aggregated predictions. When categorizing firm 

characteristics into Hou et al.’s six types of firm characteristics, I find that all types of firm 

characteristics contribute to the out-of-sample prediction success at the stock level (Hou et 

al., 2018).7 Additionally, I measure information shortage as the machines’ assessment of 

the expected minimum number of binary questions that need to be answered before perfect 

predictions (Shannon 1948). I show that the information shortage is negatively related to 

prediction success in the classification setup. A one standard deviation increase in 

information shortage is related to a 3%-5% reduction in the probability of prediction 

success, i.e., the chance that the prediction for the return in the next period is correct. An 

immediate implication is that portfolio performance will increase conditional on low 

information shortage. As an example, limiting the portfolio construction to stocks in the 

lowest decile of information shortage, the value-weighted long-short portfolio achieves a 

Sharpe ratio of 1.6. 

When I repeat the regression with information shortage as the response variable, I 

find that firm characteristics like firm age and change in momentum reduce the information 

shortage. Consistent with the prior literature, firm characteristics such as analyst forecast 

dispersion increase the information shortage (Zhang, 2006). However, aside from the 

traditional proxies of information uncertainty related to return prediction, many other 

variables also contribute to the information shortage. For example, percentage change in 

 
7  See Hou, Xue, and Zhang (2018). The six categories of firm characteristics are: Momentum, value vs. 

growth, investments, profitability, trading frictions, and intangibles. 
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number of employees, market-cap-scaled operating cashflow, and 6-month momentum 

positively contribute to the information shortage. 

The classifiers perform well in the out-of-sample tests and thus are representative 

of the pricing kernel, providing a good empirical foundation to study the consequences of 

return predictability. Easley and O’Hara (2004) derive a rational expectation model with 

explicit implication on the relation between the prediction precision and the stock returns. 

They predict that the low prediction precision leads to high stock returns. I document 

empirical evidence that confirms their theoretical prediction.  

Controlling for the information shortage measure in Fama-MacBeth regression, I 

find that both the past period prediction success and the information shortage measure 

formed based on predicted probabilities are negatively related to future returns (See Jiang 

et al. 2006 and Zhang 2006). A correct past month prediction is related to a 0.2% reduction 

in the monthly return; moreover, a one standard deviation increase in information shortage 

is related to a 0.41% reduction in the stock return. 

I continue by investigating the relation between prediction success and pricing 

errors to determine the economic sources of predictability following the negative relation 

between returns and prediction success. I proxy for pricing errors with Fama-French factor 

models’ alphas. The results reveal profound insights of pricing errors as a source of 

predictability: The fluctuation of pricing errors is the primary contribution from pricing 

error to the prediction success. In particular, both the past pricing error and the change in 

pricing error contribute negatively to the prediction success, while only the change in the 

absolute value of the pricing error contributes positively to the prediction success. This 

highlights the impersistence of pricing errors are the source of predictability. 

With the profound relation between prediction success at the stock level and returns, 

a natural question is whether a portfolio on prediction precision (if tradable) can generate 

performance that the benchmark models cannot explain. To investigate this question, I map 

the innovation of market-level prediction precision in percent from an autoregressive 

model with 1 lag (AR1) to the return space spanned by 170 basis portfolios that are used 

to form Fama-French factors (Adrian et al., 2014). I then analyze the performance of a 

mimicking portfolio obtained from the linear mapping process on the common factor 
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models. My results suggest that the mimicking portfolio can generate an annual alpha of -

2.4% benchmarking to the common factor models, including the Fama-French 5 factor 

model, the Fama-French 6 factor model, the q4 factor model, and the q5 factor model. 

The machine learning prediction precision at the market level is consistently 

meaningful statistically across my out-of-sample data. Meanwhile, the precision promptly 

reacts to events that seemingly increase macroeconomic uncertainty. Although Gu et al. 

(2022) mention that the interactions between firm characteristics and macroeconomic 

variables from Goyal and Welch (2008) seem contributing to the variable importance, what 

types of macroeconomic uncertainty specifically is associated with prediction precision is 

unclear. In the final portion of the paper, I investigate the relation between the machine 

learning prediction precision and the economic uncertainty.  

Specifically, I include the war factor from Hirshleifer et al. (2023), geopolitical risk 

from Caldara et al. (2022), economic policy uncertainty from Baker et al. (2016), and 

Jurado et al.’s (2015) macroeconomic uncertainty, financial uncertainty, and real activity 

uncertainty. My results suggest that only macroeconomic uncertainty is robustly related to 

the prediction precision at the market level, highlighting the specific uncertainty concerns 

from the stock market.8 

This paper is organized as follows. Section 2 discusses the related literature. Section 

3 describes the empirical modeling and introduces the testing variables. Section 4 reports 

the modeling performance and the portfolio performance. In Section 5, I analyze the 

economic sources of prediction precision. I discuss the relation between predictability and 

returns in Section 6. Section 7 concludes the paper. 

2. Related Literature 

This paper contributes to the finance literature in two aspects. First, this paper 

contributes to the financial machine learning literature with an alternative perspective of 

return prediction and portfolio allocation. I frame the cross-sectional return prediction 

problem as a machine learning classification problem and contribute to the machine 

 
8 The financial uncertainty from Jurado et al. (2015) is also marginally related to the market-level prediction 

precision. 
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learning application in finance by providing an alternative perspective of return predictions. 

Specifically, the prior literature in asset pricing focuses on the application of machine 

learning regressions. For example, Gu et al. (2020) are the pioneers in this field, and they 

survey a range of popular algorithms in a regression setting to make stock return 

predictions (See also Chen et al. 2023). Bali et al. (2023) and Bianchi et al. (2021) apply 

the same research setting to stock options and bond market, respectively. Li and Rossi 

(2020) adopt the setting to mutual fund selections. Aubry et al. (2023) apply neural network 

to art auction prices.  

These studies adopt conventional modeling of returns that involves the 

minimization of mean squared errors. These errors are the differences between the 

predicted returns and the realized returns. For example, Fama and French (1992, 2015) and 

Hou et al. (2014, 2019) study the returns from portfolios and fit regressions to minimize 

the mean squared errors between the regression fitted values and the realized returns.  

On the opposite side, this paper frames the problem of cross-sectional return 

prediction as a classification problem. Cross-sectional deciles can be seen as 

representations of the unobservable future state returns for individual stocks. The expected 

return is the dot product between the future state returns and their associated state 

probabilities, and the prediction target of classifiers is the state probabilities. Specifically, 

this paper quantifies the returns as deciles and directly model the portfolio allocation 

process, i.e., the probability of a stock belonging to a certain decile portfolio. Due to the 

dearth in the application of multi-class classification to the return predictions, my results 

complete the methodological picture empirically and document the impressive 

performance of classification in out-of-sample predictions.  

Second, I study the sources and the consequences of cross-sectional predictability 

in future returns. Thus, I contribute to the empirical asset pricing literature (Easley and 

O’Hara 2004). Based on the predictions by the classifiers, I measure the stock-level 

prediction success and the market-level prediction precision, through which I provide novel 

intuitions on the return predictability. I provide the first evidence in the literature which 

confirms that the return predictability is negatively related to future returns at the stock 

level. This result is robust when controlling for information shortage that accounts for 
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information asymmetry and information uncertainty (Jiang et al. 2006; Zhang et al. 2006). 

I also document a list of variables that contribute to the prediction success. The machine’s 

predictability heavily relies on the fluctuation of pricing errors instead of the past pricing 

errors and is mainly influenced by the macroeconomic uncertainty. A mimicking portfolio 

of the predictability at the market level generates annual benchmark-adjusted return of 

2.4%. 

3. Empirical Methods 

I provide a general description of my methods in this section. First, I explain the 

basics of my modeling process. I briefly introduce the machine learning classification 

methods and the training process. I also discuss the metrics I adopt in evaluating modeling 

performance. Finally, I detail my data construction at the end of this section. 

3.1 Introduction to Return Prediction as A Classification Problem 

I frame the cross-sectional return prediction as a multi-class classification problem. 

Given a set of candidate outcomes, the classification process selects the most promising 

outcome as a prediction. This is the foundation of my information uncertainty measures. 

Following the convention of the asset pricing literature, I group individual stock returns 

into ten deciles per month and try to allocate each stock to its correct return decile.9  

I refer to a strategy that performs the classification prediction as a classifier. A 

classifier takes the input variables and calibrates the parameters through the modeling 

architecture. The modeling architecture maps the input variables to the probability space 

such that a loss function is minimized. Figure 1 illustrates the modeling process. 

Specifically, when I frame the problem of cross-sectional return prediction as a 

classification problem, my optimization objective is to create a model such that the 

predicted probabilities distribute exactly like the observed probabilities. I follow the 

common practice in multi-class classification problems and adopt cross-entropy loss 

function to achieve this matching process. The cross-entropy function measures the 

 
9 The classic asset pricing studies and the recent machine learning prediction studies often focus on the decile 

portfolios. For example, Fama and French (1992) sort stocks into deciles based 𝛽 loading, while Gu et al. 

(2020) sort stocks into deciles based on predicted returns. 
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difference between two probability distributions. For the real return distribution 𝑃 relative 

to the predicted distribution 𝑄 over a set of return deciles 𝐷, a classifier will minimize the 

loss function below. 

𝐿 = −𝐸𝑝 [log2 𝑞] = − ∑ 𝑃(𝑑𝑖𝑡) log2 𝑄(𝑑𝑖𝑡)

𝑑𝑖𝑡∈𝐷

,                                          (1) 

where 𝑃(𝑑𝑖𝑡) is proxied empirically by the true outcome, i.e., return decile of a stock 𝑖 at 

time 𝑡, with a value of 1 or 0. 

Then, the classifier selects the return decile with the highest predicted probability 

as its final prediction. In Table 2, I include the benchmark machine learning regression 

results, and I adopt the standard mean squared error as the loss function for these 

benchmark models (See Gu et al. 2020).10 

[Include Figure 1 Here] 

My main models include the standard multilayer perceptron, i.e., Artificial Neuron 

Network (ANN), the random forest (RF), and the gradient boosting trees (GBT). My choice 

of models depends on two considerations. First, I want to focus on powerful models only. 

Second, I do not attempt to search for models with marginal improvement in predictive 

power benchmark to the existing works in the literature. Instead, I want my models to be 

replicable and intuitive. Thus, I focus on standard models with strong predictive power.  

3.2 Artificial Neural Network 

Figure 2 illustrates an example of the ANN architecture in this paper. In a fully 

connected architecture, the standard ANN processes input through backpropagation, which 

is a calibration process that adjusts parameters to minimize the loss function. A fully 

connected feedforward neural network includes an input layer, several hidden layers, and 

an output layer.  

[Include Figure 2 Here] 

 
10 Mean squared error loss is the loss function in ordinary least square regressions. It takes the following form: 

𝐿 =
1

𝑁
∑ (𝑦𝑖𝑡 − �̂�𝑖𝑡)2

𝑖𝑡  for stocks 𝑖 and time 𝑡. 
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In my ANN classifiers, the input layers include the firm characteristics. Then, the 

firm characteristics go through the fully connected hidden layers. Each neuron in a hidden 

layer takes the input from the prior layer. This input is fed to a linear function wrapped in 

a nonlinear function, which is again included in another linear function (See Hastie et al. 

2009). The results are then fed to another hidden layer. The nonlinear function is referred 

to as activation function. In the end, the last hidden layer feeds its output to the output layer 

in my ANN classifiers, and the output layer includes ten neurons representing the return 

deciles. Each neuron in the output layer employs a SoftMax function that translates the 

output from last hidden layer into probabilities.11 In the ANN regressions, the output layer 

includes only a regression neuron.  

More specifically, consider my ANNs with multiple hidden layers. The first hidden 

layer includes 𝑁1 neurons, and the neuron 𝑖1 includes a weight vector 𝑤𝑚1𝑗
1 ∈ 𝑊𝑚1

1  for the 

corresponding firm characteristics 𝑥𝑗 ∈ 𝑋𝐽  and a bias 𝑏𝑚1
1 . 

ℎ𝑚1
1 = 𝜎 (∑ 𝑤𝑚1𝑗

1 𝑥𝑗 + 𝑏𝑚1
1

𝑗

),                                                                       (2) 

where 𝜎 is an activation function.12 In this paper, I have two ANN models, including a 

model with rectifier activation function 𝜎(𝑎) = max(0, 𝑎) and the other model with tanh 

activation function 𝜎(𝑎) =
exp(𝑎)−exp(−𝑎)

exp(𝑎)+exp(−𝑎)
. Then, ℎ1

1, ⋯ , ℎ𝑚1
1 , ⋯ , ℎ𝑁1

1  become the input of 

the second hidden layer. In general, the neuron 𝑚𝑙 in the hidden layer 𝑙 ∈ [1, 𝐿] transforms 

all 𝑁𝑙−1 output from hidden layer 𝑙 − 1, i.e., ℎ1
𝑙−1, ⋯ , ℎ

𝑚𝑙−1
𝑙−1 , ⋯ , ℎ

𝑁𝑙−1
𝑙−1  with a weight vector 

𝑤
𝑚𝑙𝑚𝑙−1
𝑙 ∈ 𝑊

𝑚𝑙
𝑙  and a bias 𝑏𝑚𝑙  as the following. 

ℎ
𝑚𝑙
𝑙 = 𝜎 ( ∑ 𝑤

𝑚𝑙𝑚𝑙−1
𝑙 ℎ

𝑚𝑙−1
𝑙−1 + 𝑏

𝑚𝑙
𝑙

𝑚𝑙−1

).                                                           (3) 

 
11 The SoftMax function is a popular scaling function in regressions to model categorical response variable. 

For example, multinomial regression also employs SoftMax function. 
12 I do not change the activation function from layer to layer in this paper. 
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The output layer takes the vector input 𝐻𝐿 from the last hidden layer and makes the 

final linear transformation 𝑓𝑑 = ∑ 𝑤𝑑𝑚𝐿ℎ
𝑚𝐿
𝐿 + 𝑏𝑑𝑚𝐿  for output neuron of class 𝑑 ∈ 𝐷, and 

the calculation finishes with the SoftMax function as below. Then, the set of predicted 

probabilities is compared to the realized outcomes in the cross-entropy loss function.13 

𝑄(𝑑) =
exp (𝑓𝑑)

∑ exp (𝑓𝑢)𝐷
.                                                                                          (4) 

3.3 Random Forest and Gradient Boosting 

I include two powerful tree models, i.e., random forest and gradient boosting tree. 

Both models are developed from the simple decision tree. Based on the values of the input 

variables, a classic binary decision tree finds the best splitting strategies to divide a sample 

into pieces sequentially such that a loss function is minimized. For each subsample that 

comes out from the splitting process, the tree will assign a class to it for the classification 

task and a numeric value to it for the regression task. In other words, the decision tree 

dissects the response space into subspaces conditional on the input variables and gives each 

of the subspaces a value. 

A random forest model builds on top of the decision trees with bootstrap 

aggregating (bagging). In each bootstrapping sample, the algorithm grows a tree by 

recursively sample from the input variables for splitting and picks the best split-point until 

the prespecified node size is reached. Then, the final prediction is made by aggregating the 

predictions from the trees in the random forest. Usually, an equal-weighted vote is taken 

as the prediction for the classification problems, while the average value is taken as the 

prediction for the regression problems.  

Consider a decision tree 𝑇(𝑧; Θ) = ∑ 𝛾𝑗𝐼(𝑧 ∈ 𝑅𝑗)𝑗∈[1,𝐽] , where 𝑧 is an observation, 

𝛾𝑗  is the assigned value in the region 𝑅𝑗 , 𝐽  is the number of regions. Θ  denotes the 

collection of parameters 𝛾𝑗 and 𝑅𝑗 for all the regions, and it also includes  𝐽.  

 
13 My benchmark machine learning regressions have a different single neuron output layer that takes a hidden 

layer’s transformation, and the result is compared to the realized return using the mean squared error loss 

function. 
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In my multi-class classification task, a boosted tree will make prediction on the 

probability of each of the outcome classes 𝑑 ∈ 𝐷 and repetitively update the prediction 

until the loss function is minimized. Specifically, the algorithm initiates the prediction for 

class  𝑑 as 𝑓𝑑0 = 0. The following boosted tree grows. 

𝑓𝑑(𝑧) = ∑ 𝑇(𝑧; Θ)

𝑏∈𝐵

,                                                                                          (5) 

where 𝐵 is the collection of all the bootstrapping subsamples. The output of the tree enters 

the SoftMax function to produce a set of probability predictions as follows. 

𝑝𝑑(𝑧) =
exp [𝑓𝑑(𝑧)]

∑ exp (𝑓𝑢(𝑧))𝑑∈𝐷
.                                                                               (6) 

The algorithm calculates pseudo residuals 𝑟𝑑𝑏 = 𝑦𝑑 − 𝑝𝑑(𝑧) for all regions 𝑅𝑗𝑏 . 

Then, it updates 𝛾𝑗 through loss minimization and outputs an updated boosted tree. 

𝑓𝑑𝑏(𝑧) = 𝑓𝑑𝑏−1(𝑧) + ∑ 𝛾𝑗𝑑𝑏

𝑗∈[1,𝐽]

𝐼(𝑧 ∈ 𝑅𝑗).                                                    (7) 

The optimization process solves the parameters in a recursive manner with the 

bootstrapping samples. 

Θ̂𝑏 = arg min
Θ𝑏

∑ 𝐿(𝑦, 𝑓𝑏−1(𝑧) + 𝑇(𝑧; Θ𝑏))

𝑖∈[1,𝑁]

,                                            (8) 

where 𝑦 is the response variable of the observation 𝑧, and 𝐿 is the cross-entropy function 

with the probabilities as the input or the mean square loss function with the numeric 

prediction as the input.  

3.4 Modeling Strategy: Training, Grid Search, and Aggregation 

Conditional on time windows, I separate historical observations into training sets, 

validation sets, and testing sets. In total, I update the models four times (every ten years), 

and the out-of-sample prediction period starts in January 1983. Figure 3 demonstrates my 

modeling strategy. 

[Insert Figure 3 Here] 
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Each update of the models includes two stages. First, using the training data set, I 

fit the individual models with different architectures and hyperparameters. Then, I make 

predictions in the following validation set, which includes the observations that the models 

do not see during the training period. I select the best architecture and hyperparameters for 

each model, which is applied to the out-of-sample predictions in the corresponding testing 

set. The specific windows that I adopt in this paper are detailed in Appendix Table A1. 

I focus on four models, including ANN with rectifier activation function, ANN with 

tanh activation function, random forest, and gradient boosting tree. The main architectural 

hyperparameters for ANN models are the number of hidden layers and the number of 

neurons in each hidden layer, while the main architectural hyperparameter for tree models 

is the max number of layers that the tree models can grow. I conduct a wide range search 

of the architectural hyperparameters, and Table 1 reports my modeling specification.  

[Insert Table 1 Here] 

I build two ANN models. Each will search for 30 sub-models and take the 

architectural specification with a shrinkage parameter. I also build two tree models. Each 

will search for four sub-models with the specified numbers of depths. For the ANN models, 

I specify the number of epochs to 1000 times. Comparably, I specify the number of trees 

in the tree models to be 1000 trees. The details of the optimization choices can be found in 

Appendix Table A2. 

In Section 4, I report the individual model’s prediction performance. However, for 

brevity, I report the economic analyses based on the measures formed with the aggregated 

predictions. I take the simplest route and aggregate the predictions from my four models 

by averaging them. However, I do not average the prediction directly. Instead, I take the 

average of each decile’s predicted probabilities across the models, based on which I make 

the return decile predictions by selecting the decile with the highest aggregated probability. 

𝑃𝑎𝑔�̂�(𝑑𝑖,𝑡) =
1

4
∑ 𝑃�̂�

𝑐∈{𝑎𝑙𝑙 4 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟𝑠}

(𝑑𝑖,𝑡),                                                      (9) 

where 𝑃𝑎𝑔�̂�(𝑑𝑖,𝑡) is the aggregated predicted decile probability for stock 𝑖 at time 𝑡 to be 

in decile 𝑑 ∈ 𝐷 and 4 represents the total of four classifiers. I then use the aggregated 
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predictions and the aggregated probabilities to calculate my uncertainty measures. I discuss 

the measures in Section 5. 

3.5 Data 

My data contains 3,342,486 monthly stock observations of 26,302 distinct common 

stocks listed on three major exchanges covering 196201:202112. The lagged predictors 

include the return decile, 102 firm characteristics, 2-digit SIC industry indicator, and 2-

digit SIC industry lagged returns. 14  Specifically, I construct the firm characteristics 

following Green et al. (2017) and Gu et al. (2020) based on CRSP and COMPUSTAT. I 

start by making the data set to be completely CRSP centric with no data elimination if 

possible. 15  I only eliminate rows with missing current returns and rows that are not 

common stocks (SHRCD 10, 11, or 12) listed on the major three exchanges (EXCHCD 1, 

2, or 3). For factor model tests and risk-free rate, I obtain Fama and French's (2015) five 

factors from French’s website. Appendix Table A3 reports the definition and summary 

statistics of my prediction sample. 

4. Modeling Performance 

In this section, I demonstrate the statistical and economic performance of my 

models. The out-of-sample performance is important to the objective of this paper. Only 

when the models perform well in extracting return information from the comprehensive set 

of public information, the stock-level prediction success and the market-level prediction 

precision become meaningful foundations for the analysis on the implications of return 

predictability. 

 
14 Following Green et al. (2017) and Gu et al. (2020), I lag the annual firm characteristics by at least 6 months, 

I lag the quarterly firm characteristics by at least 4 months, and I lag the monthly firm characteristics by at 

least 1 month. 
15 My data construction avoids the problem of fluctuating number of stocks from month to month. 
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4.1 Prediction Precision 

Panel A and B in Table 2 report the precision of the predictions from my models 

individually and in aggregate. I define the overall cross-sectional prediction precision as 

the total number of successful predictions scaled by the total number of predictions. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
1

# 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠
∑ 𝐼(𝑑𝑖,𝑡  = �̂�𝑖,𝑡)

𝑖,𝑡

,                                       (10) 

where 𝐼 is an indicator of value 1 or 0, �̂�𝑖,𝑡 is the predicted return decile, and 𝑑𝑖,𝑡 is the 

realized decile. This calculation uses only the out-of-sample predictions. I define the cross-

sectional prediction precision at time 𝑡 as the total number of successful predictions scaled 

by the total number of predictions for the specific period. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑡 =
1

# 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠𝑡
∑ 𝐼(𝑑𝑖,𝑡  = �̂�𝑖,𝑡)

𝑡

,                                     (11) 

where 𝐼 is an indicator of value 1 or 0, �̂�𝑖,𝑡 is the predicted return decile, and 𝑑𝑖,𝑡 is 

the realized decile. This calculation uses only the out-of-sample predictions. 

The best in-sample and out-of-sample model is the random forest model, delivering 

prediction precisions of 17.9% and 16% respectively. The ANN models underperform the 

tree models in both the training set and the testing set. The ANN models produce prediction 

precision around 15.5%. In general, the training set precision is higher than testing set 

precision. But the deterioration is small, except for the RF. In appendix Table A4, I detail 

the parameters selected from the in-sample training and the validation process for each 

model. Compared to the ANN model with rectifier activation function, the ANN model 

with tanh activation function tends to select small models. However, the RF model prefers 

complex structure. 

[Insert Table 2 Here] 

The naïve classifier precision is the benchmark that assigns the return decile with 

the largest discrete decile distribution prevalence to all the observations as the predicted 
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decile. 16  In other words, the naïve classifier’s prediction maximizes the prediction 

precision conditional only on the past return decile distribution assuming that the other 

characteristics contains no information about future returns. Since I balanced my in-sample 

data following the common practice of the classification, the naïve precision is 10% for the 

in-sample prediction. The out-of-sample data has slightly higher naïve precision at 10.1%. 

The binomial tests indicate that the precisions delivered by the machine learning classifiers 

are statistically meaningful.17 In other words, all the models are successful in extracting 

information of future returns from the input variables through the modeling structure. 

When I aggregate the predictions, the aggregated classification achieves even higher out-

of-sample prediction precision at 16.1%. In the appendix Table A5, I report the 2-digit SIC 

industry-level prediction precision and information shortage across the out-of-sample data 

set. Industries like Forestry, Metal, Mining, and Oil & Gas Extraction demonstrate the 

highest prediction precision, whereas Automotive Dealers & Service Stations, Trucking & 

Warehousing, and Hotels & Other Lodging Places exhibit the lowest prediction precision. 

The measurement of information shortage is detailed in the next section. 

In Table 2 Panel C, I report the performance of the benchmark regression models 

with the same parameter and hyperparameter specifications of their classifier counterparts 

such that a head-to-head comparison is possible. Specifically, these machine learning 

regression models predict numeric returns first and then prediction is sorted to form the 

decile predictions. I compare the decile predictions from the classifiers and the regressions 

and conclude that the classifiers achieve higher precision in allocating the stocks into the 

correct future deciles.  

Figure 4 shows the average precision from the aggregated prediction in the out-of-

sample period. The precision is consistently higher than 10%. Since this paper focuses on 

decile predictions, 10% is prediction precision of the naïve classifier based on historical 

 
16 The comparison between the prediction precision from the classifiers and the prediction precision from the 

naïve classifier is similar to the comparison between the prediction precision from predictive regressions and 

the historical mean. 
17 The binomial test is popular in testing whether two probabilities of success is equal. Because of the success 

is measurable for classification, i.e., a correct prediction is a success, the binomial test is often applied in 

machine learning to test if the classifier learns something from the data that is meaningful, i.e., systematically 

different from best guess based on historical distribution. 
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distribution of majority class. Therefore, Figure 4 highlights the robustness of the overall 

performance of the classification. I include the notable exogenous events that has profound 

economic impacts in the figure. Specifically, I include 9-11 attack, Hurricane Katrina, 

Hurricane Maria, and COVID-19 (Kelly and Ljungqvist 2012). Following these events, the 

precision drops immediately indicating that prediction precision correctly reflect the 

changes in the economic uncertainty. Section 5 discusses the specific relation between 

economic uncertainty and market level return predictability in details. 

[Insert Figure 4 Here] 

4.2 Economic Performance 

In this subsection, I discuss the economic performance. Because I have several 

models, to keep the performance evaluation concise, I focus on the portfolios constructed 

with the aggregation of the predictions. I form both the equal-weighted and the value-

weighted portfolios. I also include the long-short portfolios, where I short the lowest decile 

portfolio and hold the top highest decile portfolio with a 50%-to-50% weight ratio. In my 

calculation, return is adjusted with the risk-free rate.  

Table 3 reports the portfolio performance based on the decile predictions. I report 

several important statistics. First, I report the average excess return across the time periods. 

The excess return is defined as the portfolio return minus the risk-free rate. Second, I report 

the cumulative return in the out-of-sample period, i.e., 198301:202112. Third, I report 

alphas from the standard factor models including the capital asset pricing model (CAPM), 

the Fama-French 3 factor model (FF3F), and the Fama-French 5 factor model (FF5F) 

(Fama and French 1992, 2015).18 I obtain the factor-model alpha from fitting the following 

regression. 

𝑅𝑝,𝑡
𝑒 = 𝛼𝑝,𝑡 + 𝑭𝑡𝚩𝑝 + 𝜀𝑝,𝑡,                                                                               (12) 

where 𝑭𝑡   contains the factors at time 𝑡 and 𝚩𝑝  is the risk loadings for the portfolio 𝑝. 

Lastly, I report important portfolio performance including standard deviation, annualized 

 
18 I report Newy-West t statistics for the alphas with a lag of 6 (Newey and West 1987). 
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Sharpe ratio, turnover, maximum drawdown, and the average number of stocks in each 

portfolio. 

[Insert Table 3 Here] 

I define monthly Sharpe ratio as a portfolio’s excess return scaled by the standard 

deviation of the portfolio return, and I annualize the Sharpe ratio by multiplying the 

monthly Sharpe ratio with √12: 

𝑆𝑅𝑝 =
𝐸(𝑅𝑝 − 𝑅𝑓)

𝜎(𝑅𝑝)
× √12.                                                                             (13) 

The turnover is defined as  

𝑇𝑢𝑟𝑛𝑜𝑣𝑒𝑟 =
1

𝑛
∑ (∑ |𝑤𝑗,𝑖+1 −

𝑤𝑗,𝑖(1 + 𝑟𝑗,𝑖+1)

∑ 𝑤𝑘,𝑖(1 + 𝑟𝑘,𝑖+1)𝑘
|

𝑗

)

𝑡+𝑛

𝑖=𝑡

,                      (14) 

where 𝑤𝑗,𝑖 represents the weight of stock 𝑗 during month 𝑖 in a portfolio (Gu et al. 2020; 

Neely et al. 2014). I define the maximum drawdown according to the most recent peak of 

the cumulative return in the sample coverage. 

𝑀𝑎𝑥𝐷𝐷𝑡:𝑡+𝑛 = min
𝑡:𝑡+𝑛

(
𝑌𝑖+1 − 𝑌𝑖

𝑝𝑒𝑎𝑘

𝑌𝑖
𝑝𝑒𝑎𝑘

),                                                         (15) 

where 𝑖 is a trading month during the investment window 𝑡: 𝑡 + 𝑛. 𝑌𝑖
𝑝𝑒𝑎𝑘

 is the highest 

cumulative return until the month 𝑖. 

Table 3 Panel A reports the equal-weighted portfolio performance using the 

classification predictions, while Panel B reports the value-weighted portfolio performance 

using the classification predictions. In general, the aggregate of the algorithms is good at 

dissecting future returns. The portfolio returns present a linear pattern with the lowest 

decile delivering the lowest return and the highest decile delivering the highest return. My 

portfolios deliver average excess return as high as 2.3% (1.4%) monthly for the equal-

weighted (value-weight) scheme. The alphas from CAPM and factor models indicate that 

the standard risk factors cannot fully explain the returns from the portfolios including 

stocks of returns that are below or above the market median returns. The long-short 
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portfolios deliver Sharpe ratios significantly higher than the Sharpe ratios from holding the 

market return. The maximum drawdowns decrease significantly in the long-short portfolios. 

In Appendix Table A6, I include the performance statistics for the portfolios based on the 

predictions including only the stocks from the top 50% market capitalization. My findings 

indicate that the performance of the strategy is robust. My analyses in this section together 

also point out an investor can beat the market substantially by only correctly predicting 

stock returns for just more than 16% of the time.  

In Panel C and Panel D, I report the portfolio allocation performance based on the 

stacked models including both aggregated predictions from the classification models and 

the regression models. Only stocks that are predicted to be in a portfolio by both the 

classification models and the regression models are included in the related portfolio. 

Comparing to the Panels A and B, the performance of the portfolios based on the stacked 

predictions increases substantially and deliver Sharpe ratios of 3.4 and 1.5 for equal-

weighted long-short portfolio and value-weighted long-short portfolio, respectively. More 

importantly, if we compare the performance of the stacked predictions with the portfolio 

performance from the regression models in appendix Table A7, according to the long-short 

portfolios’ Sharpe ratios, the stacked predictions’ performance increases significantly by 

about 13% in the equal-weighted scheme and 48% in the value-weighted scheme, 

respectively. This indicates that the classification models provide meaningful additional 

information about future returns benchmarking against machine learning regressions’ 

predictions. In general, the classification models’ performance is on par with the machine 

learning regressions’ performance. Since machine learning regressions provide state-of-

the-art performance in the cross-sectional return predictability, I conclude that the 

classification models’ prediction precision is a good representation of the market’s best 

anticipated prediction precision and that it is reasonable to adopt such precision measure 

as a proxy in the analysis of the return predictability’s implications (Gu et al. 2020). 

5. Sources of Return Predictability 

In this section, I leverage the prediction performance of the classifiers to investigate 

the sources of cross-sectional return predictability. In Table 4, I report the details of the 
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out-of-sample performance of the aggregated predictions in confusion matrices. Panel A 

reports the number of observations with the predicted decile 𝑑�̂� in contrast with the realized 

decile 𝑑𝑡 . For example, the first row in the first column shows that the aggregated 

predictions place 122,627 out-of-sample observations in the predicted decile 1, and these 

observations also realize in decile 1 in the next period. Panel B reports the scaled version 

of Panel A by the number of observations in the true class. Panel C reports the scaled 

version of Panel A by the number of observations in the entire sample.  

[Insert Table 4 Here] 

My results show that the models on average devote the most resources to the deciles 

on the two tails and around the center of the return distribution. The models also achieve 

the highest precisions in these deciles. For example, for the real decile 1, the models spend 

the most resources and made 546,858 predictions, out of which 112,627 observations 

realize in decile 1.19 These 112,627 observations make up 5% in the total precision out of 

the 100 possible combinations between the predicted deciles and the realized deciles. 49% 

of these observations that realize in decile 1 are detected correctly by the aggregated 

predictions from the machines. While the model also gains precision from deciles 6-8 and 

decile 10.  

5.1 Predictability, Return Decile Transitions, and Information 

Shortage 

I proxy the information shortage on a market level for individual stocks using 

Shannon’s information entropy based on the predicted probabilities as the following 

(Shannon 1948).20  

 
19 I view the number of the observations allocated into a predicted decile as the total resources the machines 

spend on the predictions. For example, the summation of first row in Table 3 Panel A is 546,858, indicating 

that the machines predict this many observations as decile 1 observations. The numbers of the observations 

predicted to be in decile 1 to decile 10 are the following: 546,858, 221,697, 57,031, 72,270, 126,301, 435,344, 

261,155, 230,693, 137,730, and 411,396. Therefore, the models spend the least resources on decile 3 and 

decile 4. 
20 Such measure is conditional on the past public information. Since the models condense the information 

from a comprehensive list of predictors and deliver significant performance, I argue that this information 

shortage is representative for the best predictions based on public information. 
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𝐸𝑖,𝑡 = − ∑ 𝑝(𝑑𝑖,𝑡)̂ log2 𝑝(𝑑𝑖,𝑡)̂

𝑑𝑖,𝑡∈𝐷

,                                                                (16) 

where 𝐷 includes [1:10] and 𝑝(𝑑𝑖,𝑡)̂  stands for the predicted probability of the event that 

the stock 𝑖 at time 𝑡 will be in the decile 𝑑𝑖,𝑡. Note that my measure of information shortage 

is concurrent because it is directly from the predictions, while the measure of precision 

depends on past prediction accuracy.  

By definition, my information shortage measures the expected minimum number 

of binary questions that need to be answered to make 100% correct predictions, and the 

unit of the information shortage is then in “bits”. In other words, if a stock is associated 

with an entropy or information shortage of three, at least three binary questions about the 

decile returns must be answered so that the prediction can be made without uncertainty. In 

other words, the three bits represent the information shortage in making return predictions. 

With the measures of prediction precision and the information shortage, I continue 

to investigate the transition probabilities and their relations with the machine learning 

predictability. Table 5 presents my analyses. Panel A reports the unconditional transition 

probabilities of cross-sectional return deciles during the out-of-sample period. Panel B 

demonstrates the prediction precision from the combined model by the transitions, while 

Panel C reports the information shortage by the transitions. 

[Insert Table 5 Here] 

Compared with a random distribution of return transition, which should have a 1% 

probability, the unconditional transition probabilities are distributed in an uneven way. 

First, the center of the transition matrix highlights the certainty of the return transitions 

from deciles 4-7 to the center of the return distribution. Such transitions show a probability 

of around 1.2%. Transitions from decile 1 to deciles 1 and 10 have probabilities of 1.7% 

and 1.8%, respectively. Similarly, transitions from decile 10 to deciles 1 and 10 also have 

greater certainty. In Panel B, the prediction precisions for each transition suggest that the 

machines take advantage of the uneven distribution of the transition probabilities. The 

machines achieve the highest precision for the transitions from the center deciles to the 

center deciles and the transitions from the extreme deciles to other deciles.  
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The results in Panel C of Table 5 emphasize the machines’ choice from the 

information perspective. The table replicates the uneven distribution of transition 

probabilities from Panel A and reflects the similarity in the information shortage. The 

transitions in the center and the extreme transitions are clearly of smaller information 

shortage, while other transitions have greater information shortage. 

5.2 Predictability, Variable Importance, and Tests on Firm 

Characteristics 

Figure 5 reports the average variable importance across the training periods for each 

variable. I take the average percentage of total sum of squared error reduction to estimate 

the variable importance for the tree models across all the trees and the splitting nodes 

related to the predictors of interest. Similarly, I apply Gedeon method to compute the 

variable importance in the neural networks, and Gedeon’s method is based on the 

summation of the squared normalized weights related to each input predictor in all the 

layers (Breiman 1984, 2001; Gedeon 1997; Hastie et al. 2009).  

My results show that the models draw information from different predictors. The 

ANN models extract information from a wider range of predictors compared with the tree 

models. Notably, the gradient boosting tree heavily relies on idiosyncratic volatility 

(idiovol), which contributes 45% of the sum of squared error reduction in the model. The 

ANN models rely more on past industry information (sich2) and return decile distribution 

(label10), which contribute more than 20% and more than 6% to the neural weights, 

respectively. The selection effect is also obvious. Variables such as annual income (acc 

and absacc), industry-adjusted percentage change in capital expenditures (pchcapx_ia), 

and analysts’ mean annual earnings forecast (sfe) contribute the least to the machines’ 

predictions. 

[Insert Figure 5 Here] 

Next, I study the return predictability from the machines with respect to the firm 

characteristics, assuming linear relations. Specifically, I focus on two measures, i.e., the 

prediction success and information shortage. I define the prediction success as a dummy 

variable with value of 1 indicating the predicted decile is the same as the realized decile, 
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while the information shortage is defined with the information entropy using  the predicted 

probabilities.  

I perform two Fama-MacBeth regressions. Specifically, I regress the prediction 

success and the information shortage on the firm characteristics, which are included in the 

machine learning models. Therefore, the coefficients of the Fama-MacBeth regressions 

indicate the marginal contribution from the firm characteristics to the prediction success 

and the information shortage. 

𝑆𝑢𝑐𝑐𝑒𝑠𝑠𝑖,𝑡 𝑜𝑟 𝐼𝑛𝑓𝑜. 𝑆ℎ𝑜𝑡𝑎𝑔𝑒𝑖,𝑡 = 𝛾0 +  𝑪𝒉𝒂𝒓.𝒊,𝒕−𝟏 𝚪 + 𝜀𝑖,𝑡.                  (17) 

[Insert Table 6 Here] 

Table 6 presents the results of my analyses, and I report the significant predictors 

only. Panel A shows a list of variables that are related to the prediction precision. For 

example, a one standard deviation increase in the change of the 6-month momentum 

(chmom) is related to a 0.4% increase in the prediction precision, while return on assets 

(roa) is related to a 0.05% decrease in the return predictions. In total, there are 24 (30) firm 

characteristics that are positively (negatively) related to machine learning prediction 

precision. These characteristics cover all six types of firm characteristics of Hou et al.’s 

categorization, including momentum, value vs. growth, investment, profitability, trading 

frictions, and intangibles (Hou et al. 2018). 

The appendix Table A8 reports the results of the analysis on information shortage. 

49 firm characteristics are positively related to information shortage, including variables 

such as analysts’ earnings forecast dispersion (disp), return on equity (roeq), earnings-to-

price ratio (ep), and beta. In comparison, 35 predictors are negatively related to the 

information shortage, including firm age (age), change in 6-month momentum (chmom), 

dividend yield (dy), and bid-ask spread (baspread). Specifically, for example, a standard 

deviation increase in analysts’ earnings forecast dispersion (disp) is associated with the 

increase in the information shortage of 0.003 bit, while one-year increase in firm age is 

related to a reduction of 0.012 bit in the information shortage.  
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5.3 Predictability and Information Shortage 

I explore the relation between prediction precision and information shortage. I 

adopt the information shortage calculated as the information entropy defined in Subsection 

5.1 that captures the additional requirement of information to make fully correct predictions. 

Table 7 reports the results across the models and the aggregated prediction. The results 

emphasize the negative relation between the probability of successful prediction and the 

information shortage. In general, for the aggregated predictions, a one-standard-deviation 

increase in the information shortage leads to a decrease in the successful rate of prediction 

by 3.9%. 

[Insert Table 7 Here] 

An immediate implication of this finding is that the portfolio allocation 

performance may increase if the portfolio construction only includes low information 

shortage stocks. Indeed, the performance of portfolios increases substantially conditional 

on the stocks of the bottom decile information shortage. Table 8 reports the portfolio 

performance. The Sharpe ratios of the equal-weighted and value-weighted long-short 

portfolios increases to 2.98 and 1.58, respectively. 

[Insert Table 8 Here] 

5.4 Predictability and Economic Uncertainty 

The theory literature often predicts macroeconomic uncertainties as the main 

drivers of asset variations (Bansal and Yaron 2004; Barro 2009; Lucas 1978). Therefore, 

an implication to the predictability literature is that the macroeconomic uncertainties may 

predict stock returns (Lettau and Ludvigson 2001a; Cochrane 2007). The prior subsections 

investigate the influence from the stock-level firm characteristics on the prediction 

performance. In this subsection, I focus on the influence of macro-level events as proxied 

with common uncertainty indices, including war factor, geopolitical risk, economic policy 

uncertainty, macro uncertainty, financial uncertainty, and real uncertainty (Baker et al. 

2016; Caldara et al. 2022; Hirshleifer et al. 2023; Jurado et al. 2015). Specifically, I perform 
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the following time series regression and report Newey-West testing statistics with the lag 

of 12. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑡 = 𝛾0 +  𝑈𝑛𝑐𝑒𝑟𝑡𝑖𝑎𝑛𝑡𝑦𝑡 + 𝜀𝑖,𝑡.                                                   (18) 

Table 9 reports regression results. Among the macroeconomic uncertainty indices, 

only the Macroeconomic Uncertainty of Jurado et al. (2016) show robust significant 

influence on the market level prediction precision in percent. A one-standard-deviation 

increase in the macroeconomic uncertainty is associated with 0.31% reduction in the 

monthly prediction precision at the market level. The financial uncertainty proxy from 

Jurado et al. is marginally significant. This finding highlights the influence of 

macroeconomic factors on the market level prediction precision, consistent with the 

theoretical predictions that the drivers of the asset prices include macroeconomic variables. 

[Insert Table 9 Here] 

6. Predictability and Stock Returns 

Easley and O’Hara (2004) predict that the precision is negatively related to the 

stock return. For example, it is believed that the better accounting and governance quality 

can make investors more confident in their predictions of cash flows. Such confidence 

reduces risk premium (Bansal and Yaron 2004; Christensen et al. 2010). Section 4 

establishes the state-of-the-art performance of machines predictions using classification 

models. Considering the inclusiveness of the broad set of public information, the 

predictions provide a sound empirical foundation to analyze the theoretical implication of 

the return predictability in the investment literature.  

Specifically, I focus on providing individual stock-level evidence of the 

relationship between returns and the cross-sectional prediction success. Following Green 

et al. (2017), I run the using the Fama-MacBeth predictive regression, controlling 102 firm 

characteristics, 2-digit SIC fixed effects, and past return deciles.  

𝑅𝑖,𝑡 = 𝛾0 + 𝛾1𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 𝑆𝑢𝑐𝑐𝑒𝑠𝑠𝑖,𝑡−1 + 𝛾2𝐼𝑛𝑓𝑜. 𝑆ℎ𝑜𝑟𝑡𝑎𝑔𝑒𝑖,𝑡                

+ 𝑪𝒐𝒏𝒕𝒓𝒐𝒍𝒔𝒊,𝒕−𝟏𝚪 + 𝜀𝑖,𝑡,                                                               (19) 
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where all regressors are based on lagged information. The regression controls for the 

information shortage to mitigate concerns on the information uncertainty and information 

asymmetry (Kelly et al. 2012; Jiang et al. 2006; Merton 1987; Zhang 2006).  

I report the regression results in Table 10 covering the monthly stock data during 

the out-of-sample period from 198301:202112 on more than 2.5 million observations. 

Controlling for the firm characteristics and the information shortage, the prediction success 

from the past month remains significant at the 0.01 level, indicating that the relation 

between return and the prediction precision is strong and robust. 21  A past prediction 

success is associated with a 0.2% reduction in the one-month-ahead return. 

[Insert Table 10 Here] 

Note that the 102 firm characteristics include almost all common proxies of 

uncertainty directly related to or irrelated to traditional information uncertainty proxies. 

For example, firm age, monthly average of bid-ask spread (baspread), standard deviation 

of analyst earnings forecasts (disp), dollar value volatility (dolvol), number of analyst 

coverage (nanalyst), return volatility (retvol), earnings surprise (sue), among others are all 

included in the regressions (Green et al. 2007; Gu et al 2020; Jiang et al. 2005; Zhang 2006). 

The stock-level results for the information shortage are also consistent with the theoretical 

prediction from Merton (1988) and the empirical evidence from Jiang et al. (2006) and 

Zhang (2006). The standalone regression of information shortage indicates that 1 bit 

increase in the additional information necessary to make perfect predictions will lead to 

0.35% decrease in the future monthly return. 

6.1 Predictability and Pricing Error Fluctuations 

The relation between stock returns and prediction success leads to a natural 

question on the role of price continuation in realizing out-of-sample predictability. The 

literature has documented the potential situations where price delay can happen (Boehmer 

and Wu 2012; Cohen et al. 2020; Hou and Moskowitz 2005). Such delay of information 

 
21 I follow Green et al. (2017) and report the predictive Fama-French regression estimates and statistics. In 

untabulated results, I show that my results are also robust under the ordinary least square (OLS) estimates 

with regular clustered errors at the firm level. 
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incorporation in price will lead to mispricing. For example, Stambaugh et al. (2015) show 

that short selling overpriced stock can be hard because of less arbitrage capital available. 

On the one hand, it is thus plausible that the predictability of the machines is dependent on 

such price delay and persistence in pricing errors. On the other hand, the predictability can 

also rely on the correction process of the pricing errors. In other words, the machines see 

the information before the market incorporates it and anticipates the time when the market 

will incorporate the information. 

To investigate this possibility, I proxy the pricing errors at the stock level using the 

most commonly used factor model, i.e., the Fama French 3 Factor model. I calculate the 

pricing errors in 60-month rolling windows. In order to study both the influence from the 

pricing errors’ direction and the influence from the pricing errors’ magnitude, I create two 

pricing error measures, i.e., the change in pricing error and the absolute change in pricing 

error. I regress the prediction success on the changes in pricing errors in Fama-MacBeth 

regression controlling for the past period pricing error following the equation below. 

𝑆𝑢𝑐𝑐𝑒𝑠𝑠𝑖,𝑡 = 𝛾0 + 𝛾1Δ𝑃𝑟𝑖𝑐𝑖𝑛𝑔 𝐸𝑟𝑟𝑜𝑟𝑖,𝑡 + 𝛾2𝑃𝑟𝑖𝑐𝑖𝑛𝑔 𝐸𝑟𝑟𝑜𝑟𝑖,𝑡−1                  

              + 𝑪𝒐𝒏𝒕𝒓𝒐𝒍𝒔𝒊,𝒕−𝟏𝚪 + 𝜀𝑖,𝑡,                                                   (20) 

where Δ𝑃𝑟𝑖𝑐𝑖𝑛𝑔 𝐸𝑟𝑟𝑜𝑟𝑖,𝑡  is difference between realized pricing error for the 60-month 

window ending in period 𝑡 and the 60-month window pricing error ending in period 𝑡 − 1. 

I also perform the similar regression using |Δ𝑃𝑟𝑖𝑐𝑖𝑛𝑔 𝐸𝑟𝑟𝑜𝑟𝑖,𝑡|  in place of 

Δ𝑃𝑟𝑖𝑐𝑖𝑛𝑔 𝐸𝑟𝑟𝑜𝑟𝑖,𝑡. Table 11 reports the results of the pricing error analysis. 

[Insert Table 11 Here] 

The Fama-MacBeth results confirm the significance of the pricing errors’ influence 

on the out-of-sample predictability. The relation between the pricing errors and the 

prediction success is profound. Specifically, the past pricing error negatively influences the 

predictability. Higher pricing errors are related to lower predictability. Similarly, higher 

contemporaneous pricing error change is also related to lower predictability. However, the 

absolute level of the pricing error changes, i.e., the scale of the pricing error change instead 

of the direction of the pricing error change, is positively contributing to the out-of-sample 
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predictability. In other words, the predictability does not come from the pricing errors or 

the continuation of pricing errors. Instead, the predictability comes from the fluctuation in 

the pricing errors. It is the impersistence in the pricing errors that contribute positively to 

the out-of-sample predictability. 

6.2 Mimicking Portfolio and Spanning Tests 

The profound relation between stock returns and prediction success implies a 

possibility that if a predictability portfolio is tradable, it may generate substantial 

benchmark-adjusted returns. To test this hypothesis, I first follow the literature and obtain 

the residuals from the autoregressive model with 1 lag. Then, I map the residuals to the 

return space spanned by 170 basis portfolio returns obtained from Kenneth French’s data 

library, including single sort, double sort, and triple sort portfolios for the characteristics 

included in the factors of Fama-French 6 factor model (Adrain et al. 2014).  

Δ𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑡 = 𝛼 + 𝑹𝒃𝜷 + 𝜀𝑡,                                                                      (21) 

where Δ𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑡 is the AR1 innovation and 𝑹𝒃 is the matrix of 170 basis portfolios. 

Then, I regress the return from the mimicking portfolio on the common factor 

models, including Fama-French 5 factor model, Fama-French 6 factor model, q4 factor 

model, and q5 factor model. 

𝑃𝑀𝑃𝑡 = 𝛼 + 𝑭𝜷 + 𝜀𝑡,                                                                                    (22) 

where 𝑃𝑀𝑃𝑡 is the mimicking portfolio return generated from the projection in equation 

(21) and 𝐹 is the factor returns. Table 12 reports the results of spanning tests. None of the 

common factor models fully explain the mimicking portfolio return. In general, the 

mimicking portfolio generates an annual alpha of around 2.4%. The mimicking portfolio 

return is strongly loaded on the market factor, value factor, profitability factor, momentum 

factor, and the investment factor. This finding confirms that the prediction precision has 

profound influence on stock returns (Easley and O’Hara 2004). 

[Insert Table 12 Here] 
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7. Conclusion 

In this paper, I provide an alternative perspective of machine learning return 

predictions, through which I shed light on the economic sources and the consequences of 

return predictability. Specifically, I first dissect stock returns into deciles and construct 

classification models to allocate the individual stocks to the future decile portfolios. My 

models deliver statistically meaningful performance and successfully predict 16% of the 

return deciles, which translates to significant economic performance. Indeed, my 

classification-based long-short portfolios can achieve a Fama-French five factor (FF5F) 

monthly 𝛼  of 1.1% and 2.1% for the value-weighted and the equal weight portfolios, 

respectively. Conditional on the bottom decile of information shortage, my long-short 

portfolios can deliver monthly returns as high as 8%, or annualized Sharpe ratios as high 

as 3. When stacking my models on top of the machine learning regression models, the 

economic performance increases substantially compared to the performance from only the 

machine learning regressions. This finding emphasizes the ability of the classification 

models in capturing the future return information in addition to the information captured 

by the machine learning regressions.  

Based on the models, I measure prediction precision and information shortage. I 

document that the market transition probabilities distribute unevenly. The transitions from 

the center and edges of the transition probability matrix are more certainty. I show that the 

machines take advantage of such unevenness and achieve exceptional detection rates in the 

transition from the lowest decile in the past to the lowest decile in the future. My measure 

of information shortage shows that the machines exploited the advantage of the transition 

matrix’s unevenness. In addition, I show that the market-level prediction precision slumps 

following exogenous macroeconomic shocks, highlighting the precision’s reflection of 

economic uncertainty. 

My results show that all six firm characteristics categories of Hou et al. (2018) 

contribute to the prediction precision and the information shortage. For example, a one 

standard deviation increase in the change of 6-month momentum (chmom) is related to a 

0.4% increase in prediction success, while return on assets (roa) is related to a 0.05% 

decrease in the prediction success. 49 firm characteristics are positively related to 
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information shortage, including variables such as analysts’ earnings forecast dispersion 

(disp), return on equity (roeq), earnings-to-price ratio (ep), and beta (beta). In comparison, 

35 predictors are negatively related to the information shortage, including firm age (age), 

change in 6-month momentum (chmom), dividend yield (dy), and bid-ask spread 

(baspread). 

I investigate the consequences of the return predictability. Specifically, Easley and 

O’Hara (2004) show that prediction precision is negatively related to firm value. Using the 

classification setup, I provide the first empirical evidence that confirms the theoretical 

prediction in the stock market. This result is robust controlling for the information shortage 

measured as the information entropy in prediction. A past prediction success is associated 

with a 0.2% (2.4%) reduction in the one-month-ahead (annual) return at the stock level. 

The spanning tests with the mimicking portfolio confirm that a portfolio of prediction 

precision, if tradable, can generate an annual benchmark-adjusted performance of -2.4%. 

My analysis also reveals the profound relation between predictability and pricing errors. I 

show that the predictability mainly comes from the fluctuation of pricing errors instead of 

the persistence in pricing errors. 
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Prediction 

Figure 1 Prediction Process 

This figure describes my modeling process. I input the independent variables, i.e., firm 

characteristics, as the features to a machine learning algorithm. The optimization process uses 

in-sample training data set to calibrate the parameters such that the predicted probabilities are 

closely matched to the ground truth distribution of the return deciles conditional on the firm 

characteristics. Based on the predicted probabilities, such as the probability of the lowest 

decile 𝑃𝐿𝑜 , the algorithm selects the return decile associated with the largest predicted 

probability as its final prediction. Based on the statistical and economic performance of the 

classifiers, the classifiers capture the pricing kernel. Thus, the predicted probabilities reflect 

the state probabilities of the time-varying state returns in deciles. 
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Figure 2 ANN Architecture 

This figure illustrates an example structure of ANN with an input layer, two hidden 

layers of 3 and 2 neurons, and an output layer. The ANN models in this paper take 

the standard form of the fully connected feed-forward multilayer perceptron. The 

input layer includes the firm characteristics. The hidden layers make nonlinear 

transformations. For classification, each neuron in the output layer transforms the 

input from the hidden layer through fitting a SoftMax function and produces 

probabilities. I adopt grid search for the combination of layer specifications and lasso 

shrinkage during the training process. The out-of-sample predictions are made by the 

best model evaluated with the validation data set. Details of the parameters and 

hyperparameter search is included in Table 1, appendix TableA1, and Table A2. 
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Training Validation Testing 

Training Validation Testing 

Figure 3 Modeling Strategy 

This figure shows my modeling strategy. The models are updated every 10 

years in this paper. Each training time uses all the data set available until 5 

years before the end of the data. These 5 years are then used in 

hyperparameter choices. The finalized models are then applied to make 

predictions for the future observations that the modeling process does not 

consider. In my tests, I mainly present the aggregated predictions that 

makes predictions based on the predicted probabilities from all the models. 
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Figure 4 Prediction Precision 

This figure demonstrates the precision time series for the aggregated 

predictions from 198301:202112. The shaded areas denote the NBER-

dated recessions. The red lines indicate exogenous shocks to the economy. 

From the left to the right, the exogenous shocks include 9-11 Attack, 

Hurricane Katrina, Hurricane Maria, and COVID outbreak. The months 

after these shocks observe decrease in the prediction precision. However, 

the precision is always above the best guess based on historical distribution 

of deciles with a precision around 10%. 
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Figure 5 Variable Importance 

This figure reports the average variable importance in percentage across all 

training periods for each individual model. 
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Table 1 Architectural Search 
The table below details the main parameter choices for my models in this paper. Panel A reports the architectural search 

for the hyperparameters. The hyperparameters are parameters decided through the tuning process happening in the 

validation data sets instead of the optimization process. For my ANN models, the main architectural choice is about the 

number of hidden layers and the number of neurons in each hidden layer. For my tree models, the maximum number of 

depths that the trees can grow is the main architectural parameter. The choice column reports this information. For the 

ANN models, each pair of parathesis encloses an individual model. Starting from the first hidden layer following the 

open parathesis until the last hidden layer before the closing parathesis, each number in the parathesis represents the 

number of neurons in a hidden layer. If a pair of parathesis encloses 𝑛 numbers, it presents an ANN model with 𝑛 hidden 

layers. For the tree models, each number in the search choice represents a separate search of a tree model that specifies 

the number as the maximum depth of the tree. 

Model Hyperparameter Search Choice 

ANN  

(ANN Rectifier/Tanh) 

1 Layers (8), (16), (32), (64), (128) 

2 Layers (128,64), (64,32), (32,16), (16,8) 

3 Layers (128,64,32), (64,32,16), (32,16,8) 

4 Layers (128,64,32,16), (64,32,16,8) 

5 Layers (128,64,32,16,8) 

Shrinkage L1=0.01 or 0 

Tree 

(RF/GBT) 
Depth 2,4,6,8 
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Table 2 Prediction Precision 
This table reports the overall in-sample performance and the overall out-of-sample performance. I pull together the 

training set predictions, including the predictions in the validation set, to generate the statistics for the in-sample 

predictions below, and I do the same for the out-of-sample predictions. Panel A reports the model performance from the 

classifiers, and Panel B reports the out-of-sample precision of the aggregated predictions. Panel C reports the machine 

learning regressions with the exact same parameters and hyperparameters for a head-to-head comparison with their 

counterpart classifiers. The decile predictions from the regression models are based on the decile sort of predicted returns 

(Gu et al. 2020). The two panels are organized in the same way. Column 1 indicates whether the performance is based 

on in-sample (IS) or out-of-sample (OOS) evaluation. Column 2 reports the precision of the prediction. Columns 3 and 

4 report the 5% and 95% bounds of the precision. Column 5 and 6 reports the binomial test results against the naïve 

classifier’s precision. RF indicates random forest, and GBT indicates gradient boosting tree. Aggregation indicates the 

aggregated predictions based on all the classifiers. 

Panel A: Classification Prediction Precision 

  (1) (2) (3) (4) (5) (6) 

  Data Set Precision 5% Bound 95% Bound 

Naïve  

Classifier  

Precision 

Binomial  

Test  

P Value 

ANN  

Rectifier 

IS 0.157 0.156 0.157 0.100 0.000 

OOS 0.155 0.155 0.155 0.101 0.000 

ANN  

Tanh 

IS 0.154 0.154 0.154 0.100 0.000 

OOS 0.154 0.154 0.155 0.101 0.000 

RF 
IS 0.179 0.179 0.179 0.100 0.000 

OOS 0.160 0.159 0.160 0.101 0.000 

GBT 
IS 0.172 0.172 0.172 0.100 0.000 

OOS 0.159 0.159 0.159 0.101 0.000 

        

Panel B: Out-of-Sample Aggregated Prediction Precision 

Aggregated OOS 0.161 0.161 0.162 0.101 0.000 
        

Panel C: Out-of-Sample Regression Prediction Precision 

  (1) (2) (3) (4) (5) (6) 

Model Data Precision 5% Bound 95% Bound 

Naïve  

Classifier  

Precision 

Binomial  

Test  

P Value 

ANN  

Rectifier 
OOS 0.126 0.126 0.127 0.101 0.000 

ANN  

Tanh 
OOS 0.129 0.128 0.129 0.101 0.000 

RF OOS 0.124 0.123 0.124 0.101 0.000 

GBT OOS 0.120 0.120 0.121 0.101 0.000 
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Table 3 Portfolio Performance 
This table reports the economic performance of the portfolios constructed based on the aggregated predictions from the individual classifiers. The statistics are based on the out-of-

sample period covering 198301:202112. The decile portfolios are sorted based on the predicted deciles monthly, which are the deciles with the highest predicted probabilities. The 

column “market” reports the performance of the buy-and-hold strategy using all common stocks in the three major exchanges. The cumulative returns are in decimal unit representing 

gross returns in the sample period. 𝛼′𝑠 are for the corresponding factor models, e.g., CAPM or Fama-French 3 Factor model. The 𝑡 statistics for the 𝛼′𝑠 are Newey-West 𝑡 statistics 

of lag 6. The performance statistics are based on excess return adjusted with risk-free rate, i.e., 30-day US treasury bill. I report annualized Sharpe ratios. Turnover is the average 

total percentage of holding changes in absolute value. Max drawdown is the max difference between current price and the most recent price peak in percentage across all months in 

my sample period. Panel A reports the equal-weighted portfolio performance based on the classification, while Panel B reports the value-weighted portfolio performance based on 

classification. Panel A reports the equal-weighted portfolio performance based on the overlapped portfolio allocation from both classification and machine learning regression, while 

Panel B reports the value-weighted portfolio performance based on the overlapped portfolio allocation from both classification and machine learning regression. A robustness check 

of the portfolio performance using only the stocks above the median market capitalization of the market is reported in the Appendix Table A6. The benchmark portfolio performance 

from machine learning regressions is reported in the Appendix Table A7. 

Panel A: Classification Equal-weighted Decile Portfolios 

Statistic Market lo 2 3 4 5 6 7 8 9 hi hi-lo 

Mean Excess Return 0.009 -0.003 0.002 0.002 0.005 0.004 0.008 0.011 0.013 0.015 0.023 0.023 

CAPM Alpha 0.000 -0.014 -0.007 -0.006 -0.003 -0.001 0.003 0.005 0.005 0.006 0.014 0.025 
 (0.049) (-4.229) (-3.969) (-2.911) (-1.495) (-0.535) (1.645) (3.271) (2.677) (3.013) (4.258) (10.406) 

FF3F Alpha 0.000 -0.013 -0.007 -0.006 -0.004 -0.002 0.002 0.004 0.004 0.006 0.014 0.024 
 (0.340) (-5.333) (-7.168) (-4.445) (-3.458) (-1.295) (1.882) (6.342) (5.111) (6.524) (6.418) (12.036) 

FF5F Alpha 0.002 -0.007 -0.006 -0.006 -0.005 -0.003 0.000 0.003 0.003 0.006 0.017 0.021 
 (1.513) (-3.350) (-5.439) (-3.902) (-4.064) (-1.818) (0.170) (5.254) (3.877) (6.274) (6.643) (12.483) 

Standard Deviation 0.058 0.092 0.066 0.057 0.052 0.036 0.037 0.042 0.053 0.063 0.080 0.029 

Sharpe Ratio 0.515 -0.102 0.131 0.144 0.310 0.385 0.766 0.940 0.860 0.848 1.023 2.729 

Turnover 0.105 0.163 0.102 0.086 0.074 0.063 0.053 0.060 0.074 0.093 0.142 0.153 

Max Drawdown -0.607 -0.904 -0.666 -0.666 -0.676 -0.663 -0.468 -0.476 -0.539 -0.543 -0.579 -0.154 

Mean N 5342 1168 474 122 154 270 930 558 493 294 879 2047 
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Table 3 (Continues) 
Panel B: Classification Value-weighted Decile Portfolios 

Statistic Market lo 2 3 4 5 6 7 8 9 hi hi-lo 

Mean Excess Return 0.008 -0.002 0.003 0.007 0.005 0.005 0.007 0.009 0.009 0.015 0.014 0.013 

CAPM Alpha 0.000 -0.015 -0.009 -0.003 -0.004 -0.002 0.001 0.002 0.001 0.004 0.002 0.014 
 (-1.674) (-5.016) (-4.172) (-1.767) (-1.803) (-0.928) (0.595) (2.834) (0.743) (1.792) (0.699) (5.701) 

FF3F Alpha 0.000 -0.013 -0.007 -0.003 -0.005 -0.003 0.000 0.001 0.001 0.005 0.004 0.014 
 (-1.738 (-5.799) (-4.537) (-1.609) (-3.008) (-2.180) (-0.276) (2.412) (1.030) (3.059) (1.661) (6.492) 

FF5F Alpha 0.000 -0.006 -0.004 -0.001 -0.006 -0.004 -0.002 0.001 0.001 0.006 0.008 0.011 
 (-1.003) (-3.381) (-2.995) (-0.741) (-3.732) (-3.327) (-3.576) (1.126) (0.733) (4.043) (3.380) (4.809) 

Standard Deviation 0.045 0.099 0.078 0.070 0.059 0.047 0.041 0.044 0.054 0.073 0.088 0.044 

Sharpe Ratio 0.583 -0.058 0.135 0.336 0.280 0.379 0.602 0.692 0.607 0.691 0.558 1.011 

Turnover 0.057 0.132 0.096 0.070 0.064 0.051 0.047 0.048 0.065 0.087 0.118 0.125 

Max Drawdown -0.527 -0.958 -0.824 -0.753 -0.720 -0.625 -0.502 -0.509 -0.616 -0.559 -0.702 -0.414 

Mean N 5342 1168 474 122 154 270 930 558 493 294 879 2047 
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Table 3 (Continues) 
Panel C: Classification + Regression Equal-weighted Decile Portfolios 

Statistic Market lo 2 3 4 5 6 7 8 9 hi hi-lo 

Mean Excess Return 0.009 -0.013 0.001 0.005 0.006 0.002 0.008 0.011 0.014 0.016 0.039 0.050 

CAPM Alpha 0.000 -0.025 -0.009 -0.003 -0.003 -0.003 0.002 0.005 0.006 0.007 0.029 0.051 

 (0.049) (-7.155) (-4.691) (-1.342) (-1.075) (-1.494) (1.208) (2.942) (3.444) (2.799) (6.604) (12.509) 

FF3F Alpha 0.000 -0.023 -0.009 -0.004 -0.003 -0.004 0.001 0.004 0.006 0.007 0.030 0.050 

 (0.340) (-8.985) (-5.811) (-1.839) (-2.195) (-2.595) (1.083) (4.452) (5.452) (4.146) (8.423) (13.216) 

FF5F Alpha 0.002 -0.017 -0.008 -0.004 -0.005 -0.005 -0.001 0.002 0.004 0.007 0.034 0.048 

 (1.513) (-8.146) (-4.446) (-1.672) (-2.915) (-3.243) (-0.563) (2.985) (4.022) (4.085) (8.063) (12.145) 

Standard Deviation 0.058 0.092 0.068 0.067 0.063 0.041 0.039 0.043 0.052 0.065 0.096 0.051 

Sharpe Ratio 0.515 -0.501 0.026 0.240 0.315 0.201 0.697 0.895 0.929 0.850 1.406 3.372 

Turnover 0.105 0.165 0.100 0.084 0.069 0.059 0.051 0.058 0.071 0.089 0.166 0.166 

Max Drawdown -0.607 -0.957 -0.792 -0.665 -0.771 -0.601 -0.441 -0.493 -0.501 -0.638 -0.499 -0.080 

Mean N 5342 413 114 25 30 39 149 97 90 56 326 739 
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Table 3 (Continues) 
Panel D: Classification + Regression Value-weighted Decile Portfolios 

Statistic Market lo 2 3 4 5 6 7 8 9 hi hi-lo 

Mean Excess Return 0.008 -0.008 0.002 0.009 0.007 0.002 0.007 0.009 0.010 0.016 0.024 0.029 

CAPM Alpha 0.000 -0.022 -0.010 0.000 -0.002 -0.004 0.000 0.002 0.002 0.007 0.012 0.031 

 (-1.674) (-6.670) (-3.778) (-0.092) (-0.605) (-1.985) (0.335) (2.090) (1.238) (2.409) (3.452) (6.770) 

FF3F Alpha 0.000 -0.020 -0.008 0.000 -0.002 -0.005 0.000 0.002 0.002 0.007 0.013 0.030 

 (-1.738) (-7.689) (-3.758) (-0.083) (-1.201) (-2.729) (-0.286) (1.672) (1.411) (3.194) (4.926) (8.262) 

FF5F Alpha 0.000 -0.012 -0.006 0.002 -0.004 -0.006 -0.002 0.000 0.001 0.008 0.015 0.025 

 (-1.003) (-5.043) (-2.554) (0.735) (-2.395) (-3.119) (-2.173) (0.190) (0.695) (3.674) (4.937) (7.492) 

Standard Deviation 0.045 0.103 0.079 0.083 0.072 0.053 0.042 0.048 0.056 0.079 0.093 0.068 

Sharpe Ratio 0.583 -0.285 0.069 0.367 0.345 0.161 0.553 0.663 0.618 0.695 0.890 1.486 

Turnover 0.057 0.135 0.092 0.063 0.057 0.046 0.044 0.046 0.058 0.080 0.134 0.135 

Max Drawdown -0.527 -0.976 -0.850 -0.765 -0.770 -0.791 -0.427 -0.459 -0.542 -0.609 -0.705 -0.391 

Mean N 5342 413 114 25 30 39 149 97 90 56 326 739 
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Table 4 Out-of-Sample Prediction Confusion Matrices 
This table reports the out-of-sample prediction confusion matrix. Panel reports the machines’ allocation of number of 

observations based on the aggregated predictions from all classifiers. The first column indicates the predicted decile, 

while the first row indicates the realized decile. For example, in the table cell of predicted decile 1 and realized decile 1, 

the aggregated predictions include 122,627 observations. The row summation of these numbers reflects the resources 

spent on the deciles by the machines. Panel B reports the scaled version of Panel A by the number of observations in the 

true class, while Panel C reports the scaled version of Panel A by the number of observations in the entire out-of-sample 

testing period. The colored blocks indicate the correct predictions. For example, in Panel B, the number 12% on the 

diagonal means the classifiers correctly predict 12% of real decile 2 observations. In Panel C, the 5% means that out of 

the entire sample, the classifiers correctly predict 5% of the observations from real decile 1. The summation of the 

diagonal percentages in Panel C sum up to the total precision of the aggregated predictions ensembled from the individual 

classifiers. 
 Panel A: Out-of-sample Prediction Confusion Matrix 

 𝑑𝑡 

𝑑�̂� 1 2 3 4 5 6 7 8 9 10 

1 122627 73891 49420 35848 32758 29953 31127 36050 47802 87382 

2 22132 28897 25348 21123 19137 18465 18843 21039 24204 22509 

3 4115 6348 6601 6050 5797 5747 5807 5966 6011 4589 

4 3526 7059 8525 8481 8137 8271 8137 8117 7472 4545 

5 4010 9549 13739 15869 17885 17476 16173 14466 11189 5945 

6 7641 25723 44113 56564 63520 66562 63255 54990 38509 14467 

7 6507 17053 25970 31158 34405 36774 36581 33948 26666 12093 

8 9745 19485 23467 24557 25248 26727 28121 29081 27974 16348 

9 10044 14235 14036 13144 12413 12818 13569 15572 17757 14142 

10 59041 47375 37785 30769 31508 29023 30236 34215 42804 68640 
            

 Panel B: Out-of-sample Prediction Confusion Matrix  

(Scaled by Total Number of Observations in the True Class) 

 𝑑𝑡 

𝑑�̂� 1 2 3 4 5 6 7 8 9 10 

1 49% 30% 20% 15% 13% 12% 12% 14% 19% 35% 

2 9% 12% 10% 9% 8% 7% 7% 8% 10% 9% 

3 2% 3% 3% 2% 2% 2% 2% 2% 2% 2% 

4 1% 3% 3% 3% 3% 3% 3% 3% 3% 2% 

5 2% 4% 6% 7% 7% 7% 6% 6% 4% 2% 

6 3% 10% 18% 23% 25% 26% 25% 22% 15% 6% 

7 3% 7% 10% 13% 14% 15% 15% 13% 11% 5% 

8 4% 8% 9% 10% 10% 11% 11% 11% 11% 7% 

9 4% 6% 6% 5% 5% 5% 5% 6% 7% 6% 

10 24% 19% 15% 13% 13% 12% 12% 14% 17% 27% 
            

 Panel C: Out-of-sample Prediction Confusion Matrix  

(Scaled by Total Number of Observations in the Entire Sample) 

 𝑑𝑡 

𝑑�̂� 1 2 3 4 5 6 7 8 9 10 

1 5% 3% 2% 1% 1% 1% 1% 1% 2% 3% 

2 1% 1% 1% 1% 1% 1% 1% 1% 1% 1% 

3 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 

4 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 

5 0% 0% 1% 1% 1% 1% 1% 1% 0% 0% 

6 0% 1% 2% 2% 3% 3% 3% 2% 2% 1% 

7 0% 1% 1% 1% 1% 1% 1% 1% 1% 0% 

8 0% 1% 1% 1% 1% 1% 1% 1% 1% 1% 

9 0% 1% 1% 1% 0% 1% 1% 1% 1% 1% 

10 2% 2% 2% 1% 1% 1% 1% 1% 2% 3% 
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Table 5 Out-of-Sample Prediction Precision by Return Decile Transition  
This table reports my analysis of machine learning return predictability during my out-of-sample period by transitions. 

Panel A reports the unconditional transition probabilities. Probabilities deviating from the random distribution probability 

1%, regardless of the direction, indicate that the transition has higher certainty. Panel B reports the prediction precision 

from the aggregated model by return decile transitions. For example, my prediction managed to achieve a precision of 

37.4% for the return transition from decile 1 to decile 1. Panel C reports the information shortage created based on the 

predicted probabilities by return decile transitions. 

Panel A: Transition Matrix 

      𝑑𝑡     

𝑑𝑡−1 1 2 3 4 5 6 7 8 9 10 

1 1.7% 1.1% 0.8% 0.7% 0.7% 0.7% 0.7% 0.8% 1.0% 1.8% 

2 1.1% 1.1% 1.0% 0.9% 0.9% 0.9% 0.9% 1.0% 1.1% 1.2% 

3 0.9% 1.0% 1.0% 1.0% 1.0% 1.0% 1.0% 1.0% 1.0% 0.9% 

4 0.7% 0.9% 1.0% 1.1% 1.1% 1.1% 1.1% 1.1% 1.0% 0.8% 

5 0.7% 0.9% 1.0% 1.1% 1.1% 1.2% 1.2% 1.1% 1.0% 0.8% 

6 0.7% 0.9% 1.0% 1.1% 1.2% 1.2% 1.2% 1.1% 1.0% 0.8% 

7 0.7% 0.9% 1.0% 1.1% 1.1% 1.2% 1.2% 1.1% 1.0% 0.8% 

8 0.8% 1.0% 1.1% 1.1% 1.1% 1.1% 1.1% 1.1% 1.0% 0.8% 

9 1.0% 1.1% 1.1% 1.0% 1.0% 1.0% 1.0% 1.0% 1.0% 0.9% 

10 1.7% 1.2% 1.0% 0.8% 0.8% 0.7% 0.7% 0.8% 0.9% 1.3% 
            

Panel B: Precision 

      𝑑𝑡     

𝑑𝑡−1 1 2 3 4 5 6 7 8 9 10 

1 37.4% 1.3% 0.1% 0.1% 0.8% 1.9% 4.2% 7.0% 7.8% 65.2% 

2 44.4% 5.3% 0.8% 0.8% 4.0% 9.6% 12.8% 16.8% 13.2% 37.6% 

3 41.0% 9.3% 1.8% 1.9% 6.2% 20.8% 18.3% 17.1% 10.4% 26.1% 

4 39.2% 10.3% 2.2% 2.4% 8.2% 31.0% 18.6% 15.7% 8.6% 20.1% 

5 41.0% 10.4% 2.4% 3.1% 8.1% 35.6% 18.3% 12.4% 6.6% 19.1% 

6 42.4% 11.4% 2.6% 3.4% 8.3% 35.1% 18.4% 12.0% 5.7% 18.0% 

7 40.7% 13.8% 4.2% 4.3% 8.6% 36.7% 18.2% 11.4% 5.1% 15.4% 

8 44.5% 15.8% 4.4% 5.0% 9.1% 35.9% 12.9% 9.6% 5.0% 13.6% 

9 53.3% 22.2% 4.5% 7.6% 9.4% 25.0% 10.0% 7.0% 4.6% 12.6% 

10 82.5% 15.6% 2.7% 4.7% 4.4% 8.6% 4.6% 3.0% 2.9% 7.5% 
            

Panel C: Information Shortage 

      𝑑𝑡     

𝑑𝑡−1 1 2 3 4 5 6 7 8 9 10 

1 3.16 3.20 3.22 3.22 3.22 3.23 3.23 3.23 3.22 3.17 

2 3.23 3.25 3.26 3.26 3.25 3.25 3.26 3.26 3.26 3.25 

3 3.24 3.26 3.25 3.25 3.24 3.24 3.24 3.25 3.26 3.26 

4 3.24 3.26 3.25 3.24 3.23 3.23 3.23 3.24 3.25 3.26 

5 3.24 3.25 3.24 3.23 3.23 3.23 3.23 3.23 3.25 3.25 

6 3.24 3.25 3.24 3.23 3.23 3.23 3.23 3.23 3.25 3.25 

7 3.24 3.25 3.24 3.23 3.23 3.23 3.23 3.24 3.25 3.25 

8 3.23 3.25 3.25 3.24 3.24 3.24 3.24 3.24 3.25 3.25 

9 3.22 3.25 3.25 3.25 3.25 3.25 3.25 3.26 3.26 3.24 

10 3.11 3.19 3.22 3.23 3.23 3.23 3.23 3.22 3.21 3.16 
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Table 6 Predictability and Firm Characteristics 
This table reports the Fama-MacBeth regression results in the investigation of the relation between prediction success 

and firm characteristics. Prediction success is a dummy variable of value 1 if the prediction is correct and 0 otherwise. 

The table reports the results for the regression 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 𝑆𝑢𝑐𝑐𝑒𝑠𝑠𝑖,𝑡 = 𝛾0 + 𝐶ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟𝑖𝑠𝑡𝑖𝑐𝑠Γ + 𝜀𝑖,𝑡 , where the 

prediction precision is based on the aggregated predictions from the individual classifiers. I report for only variables that 

are statistically significant in the linear regressions, and I split the table into the positive column and the negative column, 

where the positive column reports results for variables that are positively related to the prediction precision and the 

negative column reports for the variables that are negatively related to the prediction precision. “FM 𝑡” represents Fama-

MacBeth 𝑡 statistics with Newey-West correction. 

Positive Relation Negative Relation 

  Coefficient FM t   Coefficient FM t 

chmom 0.007 10.820 pchsale_pchinvt -0.001 -2.053 

baspread 0.021 9.020 depr -0.001 -2.127 

age 0.003 8.880 cfp -0.001 -2.377 

mve_ia 0.004 8.270 roic -0.001 -2.457 

turn 0.008 7.625 sue -0.001 -2.590 

idiovol 0.008 7.273 currat -0.003 -2.761 

betasq 0.015 6.880 cashdebt -0.001 -2.890 

mom12m 0.005 6.551 securedind1 -0.002 -3.260 

ms 0.003 6.021 gma -0.002 -3.336 

dy 0.003 4.936 salecash -0.001 -3.488 

retvol 0.011 4.766 rd_mve -0.002 -3.591 

pctacc 0.001 4.717 secured -0.002 -3.710 

mom1m 0.005 4.475 divi0 -0.018 -3.935 

agr 0.002 4.371 rsup -0.001 -4.252 

nincr 0.001 4.365 divi1 -0.022 -4.457 

rd0 0.003 3.295 roeq -0.002 -4.470 

chtx 0.001 2.689 mom36m -0.002 -4.582 

absacc 0.001 2.548 nanalyst -0.003 -4.607 

pchcapx_ia 0.001 2.376 fgr5yr -0.003 -4.862 

sgr 0.001 2.354 sp -0.002 -5.322 

saleinv 0.001 1.800 ep -0.004 -5.545 

pchdepr 0.001 1.743 disp -0.003 -5.906 

lev 0.001 1.726 zerotrade -0.003 -5.988 

ill 0.001 1.670 std_turn -0.004 -6.390 

      cash -0.004 -7.319 

   sfe -0.004 -7.796 

   bm -0.003 -8.394 

   beta -0.017 -8.960 

   roaq -0.007 -10.570 

   mom6m -0.011 -11.812 

            

Constant 0.175 11.928       

102 Characteristics Y         

Industry FE Y         

Past Return Decile Y         

Mean N 5362         

Mean Adj. R-square 0.028         
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Table 7 Predictability and Information Shortage 
This table reports the results from the Fama-MacBeth regression examining the relation between the prediction success 

at the stock-month level and the information shortage for all individual classifiers and the aggregated predictions. The 

information shortage is computed based on the predicted probabilities using binary information entropy, which measures 

the expected minimum number of binary questions a forecaster has to answer correctly before reaching 100% correct 

predictions. In the regressions, I control for the 102 firm characteristics, industry fixed effects, and past return decile. The 

𝑡 statistics are Newey-West 𝑡 statistics of lag 12 from Fama-MacBeth regression. 

 

Panel A: Summary Stats of Prediction Success and Information Shortage 

  Mean Standard Deviation Min Median Max 

Success 0.161 0.368 0.000 0.000 1.000 

Info. Shortage 3.234 0.088 2.249 3.258 3.322 

 

Panel B: Prediction Success and Information Shortage 

Dependent Variable                                                      Prediction Success 
 (1) (2) (3) (4) (5) 

Models Aggregate Ann Tanh Ann Rectifier GBT RF 

Info. Shortaget -0.440 -0.274 -0.334 -0.324 -0.588 
 (-24.905) (-37.920) (-20.461) (-31.996) (-15.175) 

       

Constant 1.571 1.087 1.221 1.255 2.072 
 (28.300) (22.682) (23.742) (21.267) (16.778) 

102 Characteristics Y Y Y Y Y 

Industry FE Y Y Y Y Y 

Past Return Decile Y Y Y Y Y 

Mean N 5362 5362 5362 5362 5362 

Mean Adj. 𝑅2 0.032 0.034 0.034 0.030 0.033 
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Table 8 Portfolio Performance Conditional on Information Shortage 
This table reports the economic performance of the conditional portfolios constructed based on the aggregated predictions from the individual classifiers using only the stocks in the 

highest decile of past 12-month precision and the stocks in the lowest decile of the information shortage. I report the results of the equal-weighted and the value-weighted portfolios 

in Panel A and B, respectively. The statistics are based on the out-of-sample period covering 198301:202112. The decile portfolios are sorted based on the predicted deciles monthly, 

which are the deciles with the highest predicted probabilities. The cumulative returns are in decimal unit representing gross returns in the sample period. 𝛼′𝑠 are for the corresponding 

factor models, e.g., CAPM or Fama-French 3 Factor model. The 𝑡 statistics for the 𝛼′𝑠 are Newey-West 𝑡 statistics of lag 12. The performance statistics are based on excess return 

adjusted with risk-free rate, i.e., 30-day US treasury bill. I report annualized Sharpe ratios. Turnover is the average total percentage of holding changes in absolute value. Max 

drawdown is the max difference between current price and the most recent price peak in percentage across all months in my sample period. Panel A and C report the equal-weighted 

portfolio performance, while Panel B and D report the value-weighted portfolio performance.  

Panel A: Classification Equal-weighted Decile Portfolios Conditional on the Lowest Prediction Information Shortage 

Statistic Market lo 2 3 4 5 6 7 8 9 hi hi-lo 

Mean Excess Return 0.009 -0.014 -0.002 0.005 0.005 0.005 0.010 0.012 0.014 0.019 0.067 0.078 

CAPM Alpha 0.000 -0.024 -0.012 -0.004 -0.004 0.000 0.004 0.005 0.006 0.010 0.057 0.078 
 (0.340) (-5.190) (-5.225) (-2.025) (-2.020) (-0.134) (3.792) (5.125) (4.651) (3.886) (7.955) (12.474) 

FF3F Alpha 0.002 -0.015 -0.011 -0.003 -0.005 -0.001 0.003 0.004 0.004 0.009 0.064 0.078 
 (1.513) (-3.164) (-4.117) (-1.751) (-2.339) (-0.758) (2.721) (4.337) (3.838) (3.411) (7.561) (12.334) 

FF5F Alpha 0.000 -0.026 -0.011 -0.003 -0.005 -0.002 0.000 0.002 0.000 0.007 0.032 0.059 
 (-1.003) (-4.693) (-3.702) (-0.895) (-2.522) (-0.896) (0.256) (2.091) (0.074) (2.115) (4.539) (9.133) 

Standard Deviation 0.058 0.133 0.077 0.067 0.058 0.035 0.033 0.038 0.049 0.067 0.153 0.090 

Sharpe Ratio 0.515 -0.370 -0.111 0.232 0.303 0.485 1.010 1.054 1.020 0.967 1.512 2.980 

Turnover 0.105 0.239 0.111 0.067 0.055 0.042 0.038 0.039 0.055 0.080 0.239 0.239 

Max Drawdown -0.607 -0.967 -0.840 -0.579 -0.751 -0.614 -0.384 -0.374 -0.516 -0.637 -0.581 -0.295 

Mean N 5342 117 48 13 16 27 93 56 50 30 88 206 
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Table 8 (Continues) 
Panel B: Classification Value-weighted Decile Portfolios Conditional on the Lowest Prediction Information Shortage 

Statistic Market lo 2 3 4 5 6 7 8 9 hi hi-lo 

Mean Excess Return 0.008 -0.026 -0.003 0.004 0.005 0.007 0.008 0.009 0.010 0.018 0.037 0.060 

CAPM Alpha 0.000 -0.040 -0.014 -0.005 -0.003 0.001 0.003 0.004 0.003 0.009 0.022 0.059 
 (-1.674) (-6.697) (-4.415) (-1.533) (-1.444) (0.573) (1.810) (2.847) (1.407) (2.211) (3.408) (8.917) 

FF3F Alpha 0.000 -0.038 -0.013 -0.005 -0.004 0.000 0.002 0.003 0.002 0.009 0.024 0.059 
 (-1.738) (-7.742) (-4.606) (-1.572) (-2.234) (0.041) (1.416) (2.464) (1.145) (2.375) (4.266) (9.133) 

FF5F Alpha 0.000 -0.026 -0.011 -0.003 -0.005 -0.002 0.000 0.002 0.000 0.007 0.032 0.055 
 (-1.003) (-4.693) (-3.702) (-0.895) (-2.522) (-0.896) (0.256) (2.091) (0.074) (2.115) (4.539) (7.666) 

Standard Deviation 0.045 0.150 0.091 0.079 0.062 0.048 0.037 0.041 0.052 0.078 0.166 0.131 

Sharpe Ratio 0.583 -0.601 -0.097 0.192 0.266 0.484 0.712 0.784 0.645 0.784 0.774 1.582 

Turnover 0.057 0.205 0.098 0.053 0.049 0.034 0.036 0.036 0.048 0.069 0.207 0.206 

Max Drawdown -0.527 -0.997 -0.881 -0.662 -0.705 -0.611 -0.374 -0.409 -0.693 -0.630 -0.666 -0.878 

Mean N 5342 117 48 13 16 27 93 56 50 30 88 206 
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Table 9 Predictability and Economic Uncertainty 
This table report the results of test on the relation between economic uncertainty and predictability. The tests include the 

war risk index from Hirshleifer et al. (2023), geopolitical risk index from Caldara et al. (2022), the US economic policy 

uncertainty index from Baker et al. (2016), and Jurado et al.’s (2015) macroeconomic uncertainty index, financial 

uncertainty index and real uncertainty index. The tests regress the market level prediction precision in percent on the 

uncertainty indices during the period 198301:202112. The t statistics are Newey-West t statistics with lag of 12. 

 

Panel A: Summary Stats of Uncertainty Indices 

  Mean Standard Deviation Min Median Max 

War 0.103 0.021 0.042 0.102 0.177 

Geopolitical Risk 82.571 31.112 28.031 77.604 303.585 

Economic Policy Uncertainty 99.037 40.321 37.266 89.000 271.832 

Macroeconomic Uncertainty 0.627 0.080 0.530 0.617 1.088 

Financial Uncertainty 0.885 0.172 0.633 0.841 1.553 

Real Uncertainty 0.597 0.052 0.511 0.590 0.878 

 

Panel B: Prediction Precision and Economic Uncertainty 

Dependent Prediction Precision 

  (1) (2) (3) (4) (5) (6) (7) 

War 0.011      -0.008 

 (0.346)      (-0.230) 

Geopolitical Risk  0.000     0.000 

  (-0.328)     (0.117) 

Economic Policy Uncertainty   0.000    0.000 

   (-1.217)    (0.217) 

Macroeconomic Uncertainty    -0.040   -0.039 

    (-6.414)   (-2.330) 

Financial Uncertainty     -0.018  -0.011 

     (-3.323)  (-1.810) 

Real Uncertainty      -0.048 0.023 

      (-3.483) (0.863)         
(Intercept) 0.160 0.161 0.163 0.186 0.177 0.190 0.181 

 (43.468) (80.619) (79.695) (50.740) (40.718) (23.111) (24.872)         
N 442 442 418 442 442 442 418 

Adj. 𝑅2 -0.002 -0.002 0.005 0.076 0.072 0.047 0.087 
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Table 10 Predictability, Information Shortage, and Stock Returns 
This table reports the Fama-MacBeth regression results investigating the influence of past predictability and the 

prediction information shortage on the monthly stock returns. The information shortage is computed based on the 

predicted probabilities using binary information entropy, which measures the expected minimum number of binary 

questions a forecaster has to answer correctly before reaching 100% correct predictions. In the regressions, I control for 

the 102 firm characteristics, industry fixed effects, and past return decile. The 𝑡 statistics are Newey-West 𝑡 statistics of 

lag 12 from Fama-MacBeth regression. 

Dependent Returns 

  (1) (2) (3) 

Prediction Successt-1 -0.001   -0.002 

  (-2.621)   (-4.126) 

       

Info. Shortaget   -0.039 -0.041 

    (-4.743) (-5.122) 

        

Constant 0.058 0.182 0.187 

 (1.241) (3.346) (3.452) 

102 Characteristics Y Y Y 

Industry FE Y Y Y 

Past Return Decile Y Y Y 

Mean N 5362 5362 5362 

Mean Adj. 𝑅2 0.094 0.094 0.095 
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Table 11 Predictability and Pricing Error Fluctuations 
This table below reports the relation between the prediction success and the change in pricing error as proxied by the 𝛼 

from Fama-French 3 Factor model for each stock with a 60-month rolling window. The analysis is based on Fama-

MacBeth regression performed for the out-of-sample period 198301:202112. The dependent variable is the individual 

stock-month prediction success, which is an indicator variable equal to 1 if the prediction is correct. The main independent 

variables area Δ𝛼 and absolute value of Δ𝛼. The t statistics are Newey-West t statistics with a lag of 12. 

Dependent Variable Prediction Success 

  (1) (2) 

𝚫𝜶𝒕−𝟏:𝒕 -2.602  

 (-4.013)  

|𝚫𝜶𝒕−𝟏:𝒕|  12.603 
  (20.588) 

𝛼𝑡−1 -0.137 -0.107 
 (-3.487) (-3.956)    

Constant 0.186 0.154 
 (10.940) (6.594) 

102 Characteristics Y Y 

Industry FE Y Y 

Past Return Decile Y Y 

Mean N 4352 4352 

Mean Adj. 𝑅2 0.028 0.035 
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Table 12 Mimicking Portfolio Spanning Tests 
This table below reports the spanning tests for the mimicking portfolio based on the market level prediction precision 

calculated as the percent of successful predictions for a month. Following the literature, the prediction precision is first 

regressed on its lagged value such that a shock factor is obtained through the residuals. The contemporaneous prediction 

precision innovation is then mapped into the return space using all 170 basis portfolio returns, including single sort, 

double sort, and triple sort portfolios for characteristics included in the factors of Fama-French 6 factor model. The 

spanning tests regress the mimicking portfolio returns on the common factors, including Fama-French 5 factors, Fama-

French 6 factors, q4 factors, and q5 factors. The tests cover the entire OOS period 198302:202112. The t statistics are 

Newey-West t statistics with lag of 12. 

Dependent Prediction Precision Mimicking Portfolio Return 

  (1) (2) (3) (4) 

𝜶 -0.001 -0.002 -0.002 -0.002 

 (-2.912) (-4.012) (-3.734) (-3.391) 

Mkt-RF 0.060 0.074   

 (6.020) (10.018)   
SMB 0.025 0.021   

 (1.580) (1.451)   
HML 0.056 0.097   

 (3.221) (6.921)   
RMW 0.187 0.174   

 (8.310) (9.684)   
CMA -0.026 -0.052   

 (-0.845) (-2.201)   
MOM  0.070   

  (4.410)   
R_MKT   0.070 0.068 

   (6.408) (6.632) 

R_ME   0.021 0.018 

   (0.967) (0.765) 

R_IA   0.057 0.057 

   (2.201) (2.122) 

R_ROE   0.187 0.196 

   (9.231) (8.519) 

R_EG    -0.025 

    (-0.806)      
N 467 467 467 467 

Adj. 𝑅2 0.313 0.422 0.329 0.329 
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Appendix 

 
 
 

  

Figure A1 Number of Stocks 

This figure demonstrates the monthly number of stocks from CRSP-

Compustat database during the period 195101:202112. To minimize the 

look-ahead bias, the sample adopted in this paper covers 196301:202112 

with 4,421 stocks on average per month, since the Compustat database was 

first released in 1963. The full sample includes 24,136 distinct stocks. The 

out-of-sample testing period starts in 198301 with 5,362 stocks on average 

per month. The out-of-sample period includes 22,242 distinct stocks. 
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Table A1 Modeling Windows 
This table reports the specification of the modeling windows. The models are updated every ten years in this paper. The 

starting date of the training process is January 1962. Every update will train the model using the training data set for in-

sample fitting. The fitted models will make predictions for the validation set, and the best combination of architecture 

and hyperparameters is chosen to make the out-of-sample predictions in the testing periods. 

Window Train Start Train End Validation End Test End 

1 01/31/1962 12/31/1977 12/31/1982 12/31/1992 

2 01/31/1962 12/31/1987 12/31/1992 12/31/2002 

3 01/31/1962 12/31/1997 12/31/2002 12/31/2012 

4 01/31/1962 12/31/2007 12/31/2012 12/31/2021 
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Table A2 Additional Optimization Choices 
I conduct a grid search for the best parameters and hyperparameters in training and validation data sets. I train all the 

sub-models first in the training data set. Then, I select the best performing model in the validation data set for the 

hyperparameter values. Panel A details the additional optimization choice of my grid search. Panel B reports the selected 

modeling parameters and hyperparameters after training and hyperparameter tuning. 

Model Parameter Choice 

ANN 

(ANN 

Rectifier/Tanh) 

Loss Function Cross entropy for classification/mean squared error for regression 

Learning Rate Adadelta with rho=0.99 and epsilon=1e-8 

Activation Rectifier or Tanh for two ANN models separately 

# Epochs 1000 

GBT 

Loss Function Cross entropy for classification/mean squared error for regression 

# Trees 1000 

Learning Rate 0.1 

RF 
Loss Function Cross entropy for classification/mean squared error for regression 

# Trees 1000 
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Table A3 Prediction Sample Firm Characteristics and Summary Statistics  
The table reports the firm characteristics used in the prediction process and the summary statistics of the firm 

characteristics following Green et al. (2017). I construct the sample such that the data is CRSP centric, and I attempt to 

include as many common share stocks listed on three major exchanges (NYSE, AMEX, and NASDAQ) as possible. 

However, I do not include other securities such as REITS. My data construction avoids issues, including high volatility 

in the number of stocks from month to month. In my models, I normalize these following predictors monthly. Panel A 

defines the characteristics following Green et al. (2017). Panel B reports the summary statistics of the raw characteristics. 

Panel A: Firm Characteristics 

Acronym Definition 

absacc Absolute value of accrual 

acc Accrual 

aeavol Average daily trading volume change around earnings 

age Firm age 

agr Percentage change in assets 

baspread Bid-ask spread 

beta Market beta 

betasq Market beta squared 

bm Book to Market 

bm_ia Industry adjusted book to market 

cash Cash to asset 

cashdebt Earnings to debt 

cashpr Cash productivity 

cfp Cash to market 

cfp_ia Industry-adjusted cash to market 

chatoia Industry-adjusted sales to assets 

chcsho Annual percentage change in shares outstanding 

chempia Industry-adjusted change in number of employees 

chfeps Change in earnings forecast 

chinv Change in inventory to assets 

chmom Cumulative returns from months t-6 :t-1 minus months t-12:t-7 

chnanalyst Change in number of analyst forecasts 

chpmia Industry-adjusted change in earnings to sales 

chtx Percentage change in total tax 

cinvest Change in capital investment 

convind An indicator equal to 1 if a firm has convertible debt 

currat Current assets to current liabilities 

depr Depreciation to PP&E 

disp Analyst forecast dispersion 

divi An indicator equal to 1 if a firm pays dividend this year but skipped the prior year 

divo An indicator equal to 1 if a firm discontinues the dividend payment this year 

dolvol Dollar value trading volume 

dy Dividend yield 

ear 3-day total return around quarterly earnings announcement 

egr Annual percentage change in book value 

ep Earnings to price ratio 

fgr5yr 5-year analyst forecast of growth 

gma Novy-Marx (2013) profitability 

grcapx 3-year percentage change in capital expenditure 

grltnoa Growth in long-term net operating assets 

herf Sales concentration 

hire Percentage change in number of employees 

idiovol 3-year weekly standard deviation of return residuals on equal weighted market returns 

ill Average of daily absolute return over dollar volume 

indmom Equal weighted average industry 12-month returns 

invest Investment to assets 

ipo An indicator equal to 1 if first year in CRSP 

lev Liabilities to market capitalization 

lgr Annual percentage change in liabilities 

maxret Maximum daily return in the past month 

mom12m 11-month cumulative returns ending in t-1 
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Table A3 (Continues) 
Panel A: Firm Characteristics 

Acronym Definition 

mom1m 1-month cumulative returns ending in t-1 

mom36m Cumulative returns from months t-36:t-13 

mom6m 5-month cumulative returns ending in t-1 

ms Mohanram score of fundamental performance 

mve Market capitalization in t-1 

mve_ia Industry-adjusted market capitalization in fiscal year end 

nanalyst Number of analyst forecasts in I/B/E/S 

nincr Number of consecutive quarters with increasing earnings 

operprof Operating profitability 

orgcap Capitalized SG&A expenses 

pchcapx_ia Industry-adjusted percentage change in capital expenditures 

pchcurrat Percentage change in the ratio of current assets to current liabilities 

pchdepr Percentage change in depreciation 

pchgm_pchsale Percentage change in gross margin minus percentage change in sales 

pchquick Percentage change in quick ratio 

pchsale_pchinvt Annual percentage change in sales minus annual percentage change in inventory 

pchsale_pchrect Annual percentage change in sales minus annual percentage change in receivables 

pchsale_pchxsga Annual percentage change in sales minus annual percentage change in SG&A 

pchsaleinv Percentage change in sales to inventory 

pctacc Accrual in percentage of absolute value of ib 

pricedelay 
The proportion of variation explained by 4 lags of market returns incremental to 

contemporaneous market return 

ps Fundamental health 

quick (Current assets - inventory)/current liabilities 

rd An indicator equal to 1 if R&D expense to assets increases more than 5% 

rd_mve R&D to fiscal-year-end market capitalization 

rd_sale R&D to sales 

realestate Buildings and capitalized leases to gross PP&E 

retvol Standard deviation of daily returns in t-1 

roaq Quarterly income before extraordinary items to assets 

roavol 
Standard deviation of 16-quarter income before extraordinary items divided by average 

quarterly total assets 

roeq Earnings before extraordinary items divided by lagged common shareholders' equity 

roic Annual EBIT minus nonoperating income divided by non-cash enterprise value (ceq+lt-che) 

rsup 
Sales from quarter t minus sales from quarter t-4 divided by fiscal-quarter-end market 

capitalization 

salecash Annual sales divided by cash and cash equivalents 

saleinv Annual sales divided by total inventory 

salerec Annual sales divided by accounts receivable 

secured Total liability scaled secured debt 

securedind An indicator equal to 1 if a firm has secured debt 

sfe 
Analysts mean annual earnings forecast for the nearest upcoming fiscal year prior to month 

of portfolio formation divided by price per share at the fiscal quarter end 

sgr Annual percentage change in sales 

sin 
An indicator equal to 1 if a firm's industry classification is in smoke or tobacco, beer or 

alcohol, or gaming 

sp Annual revenue divided by fiscal-year-end market capitalization 

std_dolvol Monthly standard deviation of daily dollar trading volume 

std_turn Monthly standard deviation of daily share turnover 

stdacc 16-quarter standard deviation of accruals divided by sales 

stdcf 16-quarter standard deviation of cash flows divided by sales 

sue Unexpected earnings 

tang Asset tangibility 

tb Tax income divided by income before extraordinary items 

turn 
3-month average trading volume ending in month t-1 scaled by the number of shares 

outstanding in current month 

zerotrade Turnover weighted number of zero trading days for the most recent month 
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Table A3 (Continues) 
Panel B: Summary Statistics of Raw Firm Characteristics 

Variable Mean Standard Deviation Min Median Max 

absacc 0.098 0.114 0.000 0.066 1.086 

acc -0.023 0.142 -1.039 -0.019 0.582 

aeavol 0.853 2.051 -1.000 0.290 21.222 

age 15.076 12.893 1.000 11.000 71.000 

agr 0.283 1.105 -0.693 0.083 35.398 

baspread 0.055 0.069 -0.430 0.036 0.985 

beta 1.083 0.651 -1.489 1.014 3.910 

betasq 1.602 1.810 0.000 1.032 15.291 

bm 0.755 0.726 -2.581 0.585 7.894 

bm_ia 23.174 691.727 -2360.690 0.021 16500.928 

cash 0.170 0.217 -0.143 0.076 0.980 

cashdebt -0.045 1.670 -382.788 0.127 2.851 

cashpr -0.570 55.119 -656.405 -0.510 594.905 

cfp 0.019 0.312 -4.130 0.042 7.626 

cfp_ia 12.595 303.092 -310.191 0.016 6795.637 

chatoia -0.005 0.243 -1.380 0.003 1.306 

chcsho 0.221 1.005 -0.892 0.008 28.089 

chempia -0.101 0.651 -24.055 -0.061 3.647 

chfeps 0.003 0.603 -19.140 0.000 20.950 

chinv 0.015 0.059 -0.287 0.001 0.426 

chmom -0.001 0.567 -8.455 -0.006 7.783 

chnanalyst 0.026 1.571 -42.000 0.000 38.000 

chpmia 0.305 7.505 -93.863 -0.004 111.909 

chtx 0.001 0.013 -0.121 0.000 0.145 

cinvest -0.027 6.895 -157.600 -0.002 3390.067 

convind 1.130 0.336 1.000 1.000 2.000 

currat 3.381 5.994 0.102 1.971 105.898 

depr 0.269 0.440 -0.984 0.152 8.147 

disp 0.171 0.465 0.000 0.044 12.500 

divi 2.006 0.263 1.000 2.000 3.000 

divo 1.998 0.246 1.000 2.000 3.000 

dolvol 11.129 3.048 -3.060 10.982 19.490 

dy 0.018 0.035 -6.122 0.001 0.556 

ear 0.003 0.083 -0.458 0.001 0.504 

egr 0.215 1.942 -38.569 0.082 43.328 

ep -0.026 0.364 -8.012 0.048 0.683 

fgr5yr 16.814 11.617 -74.000 14.830 208.830 

gma 0.376 0.389 -1.520 0.313 2.977 

grcapx 1.270 4.806 -18.500 0.177 67.915 

grltnoa 0.096 0.172 -0.917 0.060 1.256 

herf 0.067 0.081 0.003 0.043 1.000 

hire 0.091 0.339 -0.700 0.008 3.917 

idiovol 0.065 0.037 0.000 0.055 0.266 

ill 0.000 0.000 0.000 0.000 0.001 

indmom 0.142 0.300 -0.757 0.116 3.102 

invest 0.100 0.235 -0.562 0.046 2.990 

ipo 1.058 0.234 1.000 1.000 2.000 

lev 2.191 4.712 0.000 0.668 73.048 

lgr 0.309 1.060 -0.792 0.080 15.515 

maxret 0.075 0.072 0.000 0.053 0.846 

mom12m 0.129 0.595 -0.972 0.051 11.365 
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Table A3 (Continues) 
Panel B: Summary Statistics of Raw Firm Characteristics 

Variable Mean Standard Deviation Min Median Max 

mom1m 0.010 0.155 -0.728 0.000 2.000 

mom36m 0.315 0.937 -0.986 0.141 14.514 

mom6m 0.054 0.368 -0.911 0.020 7.533 

ms 3.609 1.688 0.000 4.000 8.000 

mve 11.734 2.252 2.357 11.579 18.588 

mve_ia -189.253 7566.268 -26395.790 -364.757 142031.617 

nanalyst 4.884 6.657 0.000 2.000 57.000 

nincr 0.945 1.299 0.000 1.000 8.000 

operprof 0.831 1.603 -10.005 0.615 18.265 

orgcap 0.144 0.485 -0.702 0.015 8.223 

pchcapx_ia 3.754 54.529 -890.899 -0.561 939.472 

pchcurrat 0.194 1.229 -0.915 -0.004 23.397 

pchdepr 0.106 0.565 -0.961 0.023 7.789 

pchgm_pchsale -0.096 1.144 -20.502 -0.002 6.174 

pchquick 0.243 1.464 -0.938 -0.002 29.768 

pchsale_pchinvt -0.065 0.862 -10.579 0.013 4.163 

pchsale_pchrect -0.061 0.771 -10.015 -0.001 5.431 

pchsale_pchxsga 0.029 0.427 -2.897 -0.001 6.642 

pchsaleinv 0.154 1.035 -121.036 0.010 30.974 

pctacc -0.647 5.934 -63.600 -0.258 65.444 

pricedelay 0.143 0.999 -16.494 0.062 13.838 

ps 4.089 1.762 0.000 4.000 9.000 

quick 2.667 5.466 0.061 1.294 98.567 

rd 2.077 0.367 1.000 2.000 3.000 

rd_mve 0.065 0.112 -0.034 0.028 2.228 

rd_sale 0.825 6.751 -218.737 0.031 210.899 

realestate 0.266 0.200 0.000 0.231 1.000 

retvol 0.033 0.026 0.000 0.026 0.262 

roaq -0.009 0.070 -1.047 0.006 0.219 

roavol 0.032 0.069 0.000 0.013 1.238 

roeq -0.007 0.196 -4.833 0.022 2.773 

roic -0.128 1.152 -20.737 0.066 1.266 

rsup -0.048 3.987 -2580.272 0.013 6.239 

salecash 50.266 161.272 -1230.906 9.833 2942.250 

saleinv 26.255 71.165 -106.622 7.549 1203.586 

salerec 11.789 50.632 -21796.000 5.918 276.499 

secured 0.571 0.517 0.000 0.585 4.013 

securedind 1.387 0.487 1.000 1.000 2.000 

sfe -0.596 7.512 -326.471 0.043 4.062 

sgr 0.239 0.789 -0.984 0.100 13.743 

sin 1.007 0.085 1.000 1.000 2.000 

sp 2.222 3.651 -35.942 1.028 55.651 

std_dolvol 0.862 0.410 0.000 0.794 3.332 

std_turn 4.587 13.885 0.000 1.914 625.712 

stdacc 9.588 60.087 0.000 0.141 1138.612 

stdcf 17.605 119.120 0.000 0.156 2723.991 

sue -0.006 0.190 -11.824 0.000 3.305 

tang 0.541 0.157 0.000 0.550 0.984 

tb -0.118 1.532 -25.942 -0.072 12.172 

turn 1.103 2.197 0.000 0.531 76.062 

zerotrade 1.369 3.366 0.000 0.000 20.046 
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Table A4 Selected Models after Training and Hyperparameter Tuning 
This table reports the selected hyperparameters for each combination of models and training and validation period. 

Column “Classification” reports the parameters for the classification models of the corresponding modeling architecture, 

while column “Regression” reports the parameter for the regression models of the corresponding modeling architecture. 

Model Training Window Validation Window Classification Regression 

ANN 

(Tanh) 

Train Start Train End 

Validation 

Start 

Validation 

End Hidden l1 Hidden l1 

01/31/1962 12/31/1977 01/01/1978 12/31/1982 16 0 (64, 32, 16) 0 

01/31/1962 12/31/1987 01/01/1988 12/31/1992 16 0 (64, 32, 16, 8) 0 

01/31/1962 12/31/1997 01/01/1998 12/31/2002 (32, 16) 0 (16, 8) 0 

01/31/1962 12/31/2007 01/01/2008 12/31/2012 16 0 8 0 
 

        

ANN 

(Rectifier) 

Train Start Train End 

Validation 

Start 

Validation 

End Hidden l1 Hidden l1 

01/31/1962 12/31/1977 01/01/1978 12/31/1982 (128, 64, 32, 16, 8) 0 (32, 16) 0 

01/31/1962 12/31/1987 01/01/1988 12/31/1992 (128, 64, 32) 0 8 0 

01/31/1962 12/31/1997 01/01/1998 12/31/2002 (128, 64, 32) 0 (128, 64, 32) 0 

01/31/1962 12/31/2007 01/01/2008 12/31/2012 (128, 64, 32) 0 (64, 32, 16, 8) 0 
 

        

GBT 

Train Start Train End 

Validation 

Start 

Validation 

End Max Depth Max Depth 

01/31/1962 12/31/1977 01/01/1978 12/31/1982 2 4 

01/31/1962 12/31/1987 01/01/1988 12/31/1992 4 4 

01/31/1962 12/31/1997 01/01/1998 12/31/2002 4 2 

01/31/1962 12/31/2007 01/01/2008 12/31/2012 4 4 
 

        

RF 

Train Start Train End 
Validation 
Start 

Validation 
End Max Depth Max Depth 

01/31/1962 12/31/1977 01/01/1978 12/31/1982 8 8 

01/31/1962 12/31/1987 01/01/1988 12/31/1992 8 8 

01/31/1962 12/31/1997 01/01/1998 12/31/2002 8 8 

01/31/1962 12/31/2007 01/01/2008 12/31/2012 8 8 
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Table A5 Average Precision and Average Information Shortage by Industry 
This table reports the industry averages of prediction precision and information shortage across the out-of-sample period 

computed with all common stocks in the three major exchanges (NYSE, AMEX, and NASDAQ). Panel A reports the 

averages for the prediction precision, while Panel B reports averages for the information shortage. The prediction 

precision is defined as the ratio between number of successful predictions and the total number of predictions. The 

information shortage is defined based on the aggregated predicted decile probabilities 𝐸𝑖,𝑡 =

− ∑ 𝑝𝑎𝑔𝑔(𝑑𝑖,𝑡)̂ log2 𝑝𝑎𝑔𝑔(𝑑𝑖,𝑡)̂
𝑑𝑖,𝑡∈𝐷 .The information shortage measures the minimum number of binary questions that 

need to be answered to completely eliminate the return prediction uncertainty. In other words, it measures the shortage 

of information. 
Panel A: Industry Level Prediction Precision 

2-digit SIC Industry Code Precision 2-digit SIC Industry Code Precision 

Forestry 8 0.263 Apparel & Other Textile Products 23 0.154 

Membership Organizations 86 0.241 Real Estate 65 0.153 
Services, Not Elsewhere Classified 89 0.192 Rubber & Miscellaneous Plastics Products 30 0.152 

Metal, Mining 10 0.186 Wholesale Trade – Nondurable Goods 51 0.152 

Motion Pictures 78 0.184 Educational Services 82 0.151 
Agricultural Production – Livestock 2 0.184 Fabricated Metal Products 34 0.151 

Non-Classifiable Establishments 99 0.183 Insurance Carriers 63 0.149 

Chemical & Allied Products 28 0.179 Heavy Construction, Except Building 16 0.149 
Legal Services 81 0.178 Personal Services 72 0.148 

Coal Mining 12 0.176 General Building Contractors 15 0.148 

Oil & Gas Extraction 13 0.173 Security & Commodity Brokers 62 0.147 
Business Services 73 0.172 Transportation Equipment 37 0.147 

Local & Interurban Passenger Transit 41 0.169 Eating & Drinking Places 58 0.147 

Holding & Other Investment Offices 67 0.169 Transportation Services 47 0.147 
Instruments & Related Products 38 0.166 Auto Repair, Services, & Parking 75 0.147 

Electronic & Other Electric Equipment 36 0.166 Apparel & Accessory Stores 56 0.147 

Water Transportation 44 0.166 Furniture & Fixtures 25 0.146 
Nonmetallic Minerals, Except Fuels 14 0.166 Building Materials & Gardening Supplies 52 0.146 

Electric, Gas, & Sanitary Services 49 0.166 Lumber & Wood Products 24 0.146 

Communications 48 0.164 Food & Kindred Products 20 0.146 
Health Services 80 0.163 General Merchandise Stores 53 0.145 

Special Trade Contractors 17 0.163 Paper & Allied Products 26 0.144 

Miscellaneous Manufacturing Industries 39 0.163 Tobacco Products 21 0.144 
Engineering & Management Services 87 0.162 Petroleum & Coal Products 29 0.143 

Industrial Machinery & Equipment 35 0.161 Stone, Clay, & Glass Products 32 0.143 

Amusement & Recreation Services 79 0.161 Transportation by Air 45 0.142 
Insurance Agents, Brokers, & Service 64 0.160 Primary Metal Industries 33 0.142 

Furniture & Home furnishings Stores 57 0.158 Railroad Transportation 40 0.141 

Depository Institutions 60 0.157 Social Services 83 0.140 
Nondepository Institutions 61 0.157 Hotels & Other Lodging Places 70 0.140 

Miscellaneous Retail 59 0.157 Trucking & Warehousing 42 0.139 

Wholesale Trade – Durable Goods 50 0.157 Food Stores 54 0.139 
Pipelines, Except Natural Gas 46 0.156 Textile Mill Products 22 0.139 

Printing & Publishing 27 0.155 Automotive Dealers & Service Stations 55 0.136 

Agricultural Production – Crops 1 0.154 Leather & Leather Products 31 0.136 
Agricultural Services 7 0.154 Miscellaneous Repair Services 76 0.133 
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Table A5 (Continues) 
Panel B: Industry Level Information Shortage 

2-digit SIC Industry Code 
Info. 

Shortage 
2-digit SIC Industry Code 

Info.  

Shortage 

Electric, Gas, & Sanitary Services 49 3.190 Miscellaneous Manufacturing Industries 39 3.247 

Depository Institutions 60 3.196 Nondepository Institutions 61 3.247 
Tobacco Products 21 3.197 Health Services 80 3.248 

Non-Classifiable Establishments 99 3.198 Furniture & Fixtures 25 3.248 

Chemical & Allied Products 28 3.204 Industrial Machinery & Equipment 35 3.248 
Pipelines, Except Natural Gas 46 3.211 Wholesale Trade – Nondurable Goods 51 3.248 

Railroad Transportation 40 3.212 Stone, Clay, & Glass Products 32 3.249 

Forestry 8 3.213 Real Estate 65 3.249 
Membership Organizations 86 3.218 General Merchandise Stores 53 3.250 

Metal, Mining 10 3.221 Auto Repair, Services, & Parking 75 3.250 

Insurance Carriers 63 3.223 Apparel & Other Textile Products 23 3.250 
Petroleum & Coal Products 29 3.226 Rubber & Miscellaneous Plastics Products 30 3.250 

Motion Pictures 78 3.231 Special Trade Contractors 17 3.251 

Business Services 73 3.231 Wholesale Trade – Durable Goods 50 3.251 

Nonmetallic Minerals, Except Fuels 14 3.232 Hotels & Other Lodging Places 70 3.251 

Insurance Agents, Brokers, & Service 64 3.232 Services, Not Elsewhere Classified 89 3.252 

Holding & Other Investment Offices 67 3.232 Miscellaneous Retail 59 3.252 
Communications 48 3.233 Agricultural Services 7 3.252 

Paper & Allied Products 26 3.233 Local & Interurban Passenger Transit 41 3.253 

Food & Kindred Products 20 3.233 Educational Services 82 3.254 
Printing & Publishing 27 3.234 Eating & Drinking Places 58 3.255 

Oil & Gas Extraction 13 3.235 Building Materials & Gardening Supplies 52 3.257 
Water Transportation 44 3.237 Lumber & Wood Products 24 3.257 

Engineering & Management Services 87 3.237 Trucking & Warehousing 42 3.257 

Instruments & Related Products 38 3.238 Social Services 83 3.260 
Personal Services 72 3.240 General Building Contractors 15 3.261 

Security & Commodity Brokers 62 3.241 Legal Services 81 3.262 

Electronic & Other Electric Equipment 36 3.242 Leather & Leather Products 31 3.262 
Amusement & Recreation Services 79 3.244 Heavy Construction, Except Building 16 3.263 

Fabricated Metal Products 34 3.244 Primary Metal Industries 33 3.263 

Coal Mining 12 3.244 Automotive Dealers & Service Stations 55 3.263 
Agricultural Production – Crops 1 3.245 Apparel & Accessory Stores 56 3.263 

Food Stores 54 3.245 Furniture & Home furnishings Stores 57 3.264 

Agricultural Production – Livestock 2 3.245 Transportation by Air 45 3.266 
Transportation Equipment 37 3.245 Textile Mill Products 22 3.268 

Transportation Services 47 3.246 Miscellaneous Repair Services 76 3.285 
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Table A6 Performance of Portfolios Including Stocks with Top 50% Market Capitalization 

This table reports the economic performance of the portfolios using only the stocks with above median capitalization constructed based on the aggregated predictions from the 

individual classifiers. The statistics are based on the out-of-sample period covering 198301:202112. The decile portfolios are sorted based on the predicted deciles monthly, which 

are the deciles with the highest predicted probabilities. The column “market” reports the performance of the buy-and-hold strategy using all common stocks in the three major 

exchanges. The cumulative returns are in decimal unit representing gross returns in the sample period. 𝛼′𝑠 are for the corresponding factor models, e.g., CAPM or Fama-French 3 

Factor model. The 𝑡 statistics for the 𝛼′𝑠 are Newey-West 𝑡 statistics of lag 6. The performance statistics are based on excess return adjusted with risk-free rate, i.e., 30-day US 

treasury bill. I report annualized Sharpe ratios. Turnover is the average total percentage of holding changes in absolute value. Max drawdown is the max difference between current 

price and the most recent price peak in percentage across all months in my sample period. Panel A reports the equal-weighted portfolio performance, while Panel B reports the value-

weighted portfolio performance. 

Panel A: Classification Equal-weighted Decile Portfolios 

Statistic Market lo 2 3 4 5 6 7 8 9 hi hi-lo 

Mean Excess Return 0.009 -0.002 0.003 0.004 0.004 0.004 0.008 0.010 0.012 0.015 0.014 0.013 

Cumulative Return 24.199 -0.962 0.129 1.628 2.438 3.488 27.891 77.556 135.289 310.412 120.312 341.751 

CAPM Alpha 0.000 -0.016 -0.008 -0.005 -0.004 -0.002 0.002 0.003 0.004 0.004 0.002 0.015 
 (0.049) (-5.166) (-4.224) (-2.636) (-2.137) (-1.277) (1.270) (2.360) (1.975) (2.296) (0.721) (5.920) 

FF3F Alpha 0.000 -0.013 -0.007 -0.005 -0.005 -0.003 0.001 0.003 0.003 0.005 0.003 0.014 
 (0.340) (-7.339) (-6.773) (-3.821) (-4.378) (-2.668) (1.172) (4.022) (3.492) (4.662) (2.031) (7.075) 

FF5F Alpha 0.002 -0.007 -0.006 -0.005 -0.006 -0.005 -0.001 0.001 0.001 0.005 0.006 0.010 
 (1.513) (-4.781) (-5.426) (-3.625) (-4.683) (-3.618) (-1.114) (2.063) (1.959) (4.758) (3.551) (5.727) 

Standard Deviation 0.058 0.098 0.073 0.062 0.057 0.043 0.040 0.045 0.055 0.067 0.085 0.036 

Sharpe Ratio 0.515 -0.073 0.143 0.227 0.263 0.334 0.694 0.807 0.766 0.758 0.569 1.267 

Turnover 0.105 0.134 0.100 0.082 0.071 0.059 0.052 0.058 0.073 0.092 0.120 0.127 

Max Drawdown -0.607 -0.936 -0.649 -0.637 -0.667 -0.667 -0.450 -0.480 -0.541 -0.558 -0.659 -0.430 

Mean N 5342 283 252 66 99 126 692 407 387 202 158 441 
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Table A6 (Continues) 

Panel B: Classification Value-weighted Decile Portfolios 

Statistic Market lo 2 3 4 5 6 7 8 9 hi hi-lo 

Mean Excess Return 0.008 0.000 0.003 0.007 0.005 0.005 0.007 0.009 0.009 0.015 0.013 0.011 

Cumulative Return 19.733 -0.934 -0.019 6.261 3.084 5.432 17.497 36.998 39.210 236.704 66.740 91.874 

CAPM Alpha 0.000 -0.015 -0.009 -0.003 -0.004 -0.002 0.001 0.002 0.001 0.004 0.001 0.012 
 (-1.674) (-4.644) (-4.058) (-1.659) (-1.785) (-0.931) (0.576) (2.753) (0.660) (1.707) (0.183) (4.795) 

FF3F Alpha 0.000 -0.012 -0.007 -0.003 -0.005 -0.003 0.000 0.001 0.001 0.005 0.003 0.012 
 (-1.738) (-5.239) (-4.304) (-1.488) (-2.939) (-2.134) (-0.304) (2.336) (0.944) (2.931) (1.102) (5.328) 

FF5F Alpha 0.000 -0.005 -0.004 -0.001 -0.006 -0.004 -0.002 0.001 0.001 0.006 0.007 0.009 
 (-1.003) (-2.612) (-2.745) (-0.710) (-3.643) (-3.208) (-3.622) (1.070) (0.646) (3.888) (2.658) (3.624) 

Standard Deviation 0.045 0.102 0.079 0.072 0.060 0.048 0.041 0.044 0.054 0.074 0.093 0.050 

Sharpe Ratio 0.583 -0.015 0.140 0.333 0.281 0.374 0.600 0.689 0.602 0.681 0.498 0.753 

Turnover 0.057 0.125 0.095 0.068 0.064 0.050 0.047 0.048 0.064 0.087 0.113 0.119 

Max Drawdown -0.527 -0.960 -0.829 -0.753 -0.721 -0.637 -0.502 -0.512 -0.617 -0.559 -0.723 -0.510 

Mean N 5342 283 252 66 99 126 692 407 387 202 158 441 
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Table A7 Portfolio Performance based on Machine Learning Regressions 

This table reports the economic performance of the portfolios using only the machine learning regressions constructed based on the aggregated predictions from the individual 

classifiers. The statistics are based on the out-of-sample period covering 198301:202112. The decile portfolios are sorted based on the predicted deciles monthly, which are the 

deciles with the highest predicted probabilities. The column “market” reports the performance of the buy-and-hold strategy using all common stocks in the three major exchanges. 

The cumulative returns are in decimal unit representing gross returns in the sample period. 𝛼′𝑠 are for the corresponding factor models, e.g., CAPM or Fama-French 3 Factor model. 

The 𝑡 statistics for the 𝛼′𝑠 are Newey-West 𝑡 statistics of lag 6. The performance statistics are based on excess return adjusted with risk-free rate, i.e., 30-day US treasury bill. I report 

annualized Sharpe ratios. Turnover is the average total percentage of holding changes in absolute value. Max drawdown is the max difference between current price and the most 

recent price peak in percentage across all months in my sample period. Panel A reports the equal-weighted portfolio performance, while Panel B reports the value-weighted portfolio 

performance. 

Panel A: Regression Equal-weighted Decile Portfolios 

Statistic Market lo 2 3 4 5 6 7 8 9 hi hi-lo 

Mean Excess Return 0.009 -0.011 0.000 0.003 0.007 0.008 0.008 0.010 0.012 0.016 0.033 0.041 

CAPM Alpha 0.000 -0.022 -0.010 -0.005 -0.002 0.000 0.001 0.003 0.005 0.008 0.024 0.043 
 (0.049) (-7.222) (-4.895) (-3.712) (-1.253) (-0.095) (0.405) (1.715) (2.631) (3.567) (5.922) (11.162) 

FF3F Alpha 0.000 -0.021 -0.009 -0.005 -0.002 0.000 0.000 0.003 0.004 0.008 0.024 0.042 
 (0.340) (-8.908) (-5.954) (-6.141) (-2.527) (-0.438) (0.551) (3.437) (5.167) (6.299) (7.556) (11.718) 

FF5F Alpha 0.002 -0.015 -0.005 -0.003 -0.001 0.000 0.000 0.002 0.004 0.007 0.027 0.040 
 (1.513) (-7.846) (-3.889) (-3.354) (-1.418) (-0.528) (-0.033) (2.800) (4.551) (6.226) (7.127) (10.860) 

Standard Deviation 0.058 0.085 0.069 0.059 0.054 0.051 0.049 0.049 0.051 0.055 0.090 0.048 

Sharpe Ratio 0.515 -0.450 0.000 0.205 0.417 0.525 0.579 0.732 0.849 0.980 1.287 2.967 

Turnover 0.105 0.151 0.115 0.099 0.090 0.085 0.081 0.081 0.084 0.097 0.157 0.154 

Max Drawdown -0.607 -0.951 -0.806 -0.678 -0.627 -0.561 -0.560 -0.541 -0.544 -0.529 -0.513 -0.120 

Mean N 5342 534 534 534 534 534 534 534 534 534 534 1068 
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Table A7 (Continues) 
Panel B: Regression Value-weighted Decile Portfolios 

Statistic Market lo 2 3 4 5 6 7 8 9 hi hi-lo 

Mean Excess Return 0.008 -0.006 0.003 0.006 0.007 0.007 0.007 0.010 0.010 0.012 0.018 0.021 

CAPM Alpha 0.000 -0.019 -0.007 -0.003 -0.001 0.000 0.000 0.002 0.002 0.004 0.009 0.024 

 (-1.674) (-6.395) (-3.912) (-3.085) (-1.017) (-0.023) (0.269) (3.648) (2.498) (3.214) (4.718) (7.611) 

FF3F Alpha 0.000 -0.017 -0.006 -0.003 -0.001 0.000 0.000 0.002 0.002 0.004 0.009 0.023 

 (-1.738) (-6.837) (-3.841) (-2.518) (-1.292) (-0.323) (-0.026) (3.602) (2.808) (3.123) (5.506) (8.122) 

FF5F Alpha 0.000 -0.010 -0.002 -0.001 -0.001 -0.001 0.000 0.001 0.001 0.002 0.009 0.016 

 (-1.003) (-4.905) (-1.971) (-0.657) (-0.857) (-1.390) (-0.710) (1.336) (2.024) (1.687) (4.461) (6.629) 

Standard Deviation 0.045 0.089 0.065 0.054 0.047 0.044 0.042 0.044 0.045 0.051 0.070 0.068 

Sharpe Ratio 0.583 -0.236 0.142 0.380 0.516 0.579 0.592 0.753 0.748 0.789 0.882 1.071 

Turnover 0.057 0.109 0.077 0.064 0.058 0.053 0.051 0.051 0.052 0.055 0.082 0.095 

Max Drawdown -0.527 -0.961 -0.830 -0.684 -0.517 -0.493 -0.449 -0.456 -0.556 -0.618 -0.542 -0.430 

Mean N 5342 534 534 534 534 534 534 534 534 534 534 1068 
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Table A8 Information Shortage and Firm Characteristics 

This table reports the Fama-MacBeth regression results in the investigation of the relation between information shortage 

and firm characteristics. The information shortage is computed based on the predicted probabilities using binary 

information entropy, which measures the expected minimum number of binary questions a forecaster has to answer 

correctly before reaching 100% correct predictions. The table reports the results for the regression 

𝐼𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝑆ℎ𝑜𝑟𝑡𝑎𝑔𝑒𝑖,𝑡 = 𝛾0 + 𝐶ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟𝑖𝑠𝑡𝑖𝑐𝑠Γ + 𝜀𝑖,𝑡, where the prediction precision is based on the aggregated 

predictions from the individual classifiers. I report for only variables that are statistically significant in the linear 

regressions, and I split the table into the positive column and the negative column, where the positive column reports 

results for variables that are positively related to the information shortage and the negative column reports for the 

variables that are negatively related to the information shortage. “FM 𝑡” represents Fama-MacBeth 𝑡 statistics with 

Newey-West correction. 
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Table A8 (Continues) 
Positive Relation Negative Relation 

  Coefficient FM t   Coefficient FM t 

disp 0.006 26.843 dolvol -0.002 -1.766 

cashdebt 0.004 17.093 pchsale_pchxsga -0.001 -1.801 

sp 0.007 16.279 chempia -0.001 -1.814 

roic 0.005 16.218 quick -0.001 -1.910 

fgr5yr 0.008 15.292 invest 0.000 -1.952 

roaq 0.014 13.047 rd_sale 0.000 -2.282 

roeq 0.002 12.832 lev -0.001 -2.382 

gma 0.004 10.666 sgr 0.000 -2.412 

mom6m 0.019 10.415 operprof 0.000 -2.564 

hire 0.002 10.347 turn -0.003 -2.892 

egr 0.002 9.953 std_dolvol -0.002 -3.909 

pricedelay 0.002 9.827 absacc -0.002 -4.761 

bm 0.005 9.810 pctacc -0.002 -5.247 

rsup 0.003 9.663 saleinv -0.001 -5.276 

cash 0.007 9.418 mom1m -0.015 -5.432 

securedind1 0.003 9.363 betasq -0.023 -5.567 

cfp 0.004 9.282 maxret -0.004 -5.570 

sue 0.002 9.150 mve_ia -0.008 -6.597 

secured 0.005 8.971 pchdepr -0.001 -7.057 

divi1 0.031 8.605 rd0 -0.004 -7.322 

lgr 0.001 8.400 mom12m -0.005 -7.649 

ipo1 0.024 8.188 chtx -0.001 -8.217 

currat 0.004 7.483 chfeps -0.001 -8.588 

beta 0.032 7.463 dy -0.008 -8.850 

divi0 0.026 7.212 baspread -0.018 -9.194 

ep 0.006 6.634 mve -0.012 -9.774 

salerec 0.001 6.121 nincr -0.002 -10.443 

rd_mve 0.002 6.104 ps -0.002 -10.448 

chcsho 0.001 5.894 retvol -0.019 -11.525 

mom36m 0.004 5.600 agr -0.004 -11.894 

convind1 0.005 5.479 divo0 -0.007 -13.310 

std_turn 0.002 5.371 idiovol -0.015 -13.409 

nanalyst 0.003 5.090 ms -0.006 -13.842 

salecash 0.001 4.981 chmom -0.013 -14.319 

tang 0.002 4.795 age -0.012 -23.100 

aeavol 0.001 4.656       

depr 0.001 4.375       

sfe 0.003 4.215       

zerotrade 0.002 3.844       

pchgm_pchsale 0.001 3.731       

chinv 0.001 3.701       

chnanalyst 0.000 3.188       

sin1 0.005 3.117       

grcapx 0.000 2.699       

ear 0.000 2.680       

cinvest 0.000 2.347       

roavol 0.001 2.063       

cashpr 0.001 1.914       

herf 0.007 1.774       

            

Constant 3.172 736.765       

102 Characteristics Y         

Industry FE Y         

Past Return Decile Y         

Mean N 5362         

Mean Adj. 𝑅2 0.589         
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